#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright @2024 AI. Inspur Inc. # # @author: sunxian # @date: 2024/07/18 # from transformers.configuration_utils import PretrainedConfig class HairuoConfig(PretrainedConfig): model_type = "hairuo" keys_to_ignore_at_inference = ["past_key_values"] _auto_class = "AutoConfig" def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=14336, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, hidden_act="silu", max_position_embeddings=4096 * 32, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, rope_theta=8.4e5, rope_scaling=None, attention_dropout=0.0, mup_scale_emb=1, mup_scale_depth=32, mup_scale_width=1, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_dropout = attention_dropout self.mup_scale_emb = mup_scale_emb self.mup_scale_depth = mup_scale_depth self.mup_scale_width = mup_scale_width super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )