#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright @2024 AI. Inspur Inc. # # @author: jiangzhs # @date: 2024/10/08 # import inspect import os from typing import Optional from typing import Tuple import torch import torch.nn.functional as F from transformers.utils import is_flash_attn_2_available from transformers.utils import is_flash_attn_greater_or_equal if is_flash_attn_2_available(): from flash_attn import flash_attn_func from flash_attn import flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis # noqa from flash_attn.bert_padding import pad_input from flash_attn.bert_padding import unpad_input _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) def _get_unpad_data( attention_mask: torch.Tensor, cu_seqlens: torch.Tensor = None ) -> Tuple[torch.Tensor, torch.Tensor, int]: if cu_seqlens is not None: max_seqlen_in_batch = torch.max(cu_seqlens[1:] - cu_seqlens[:-1]).item() indices = torch.arange(0, cu_seqlens[-1].item(), device=cu_seqlens.device) else: seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return (indices, cu_seqlens, max_seqlen_in_batch) def _upad_input( query_layer: torch.Tensor, key_layer: torch.Tensor, value_layer: torch.Tensor, attention_mask: torch.Tensor, query_length: int, cu_seqlens, ): indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask, cu_seqlens) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) if query_length == kv_seq_len: query_layer = index_first_axis(query_layer.reshape(batch_size * kv_seq_len, -1, head_dim), indices_k) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) def prepare_fa2_from_position_ids(query, key, value, position_ids): query = query.view(-1, query.size(-2), query.size(-1)) key = key.view(-1, key.size(-2), key.size(-1)) value = value.view(-1, value.size(-2), value.size(-1)) position_ids = position_ids.flatten() indices_q = torch.arange(position_ids.size(0), device=position_ids.device, dtype=torch.int32) cu_seq_lens = torch.cat( (indices_q[position_ids == 0], torch.tensor(position_ids.size(), device=position_ids.device, dtype=torch.int32)) ) max_length = position_ids.max() + 1 return (query, key, value, indices_q, (cu_seq_lens, cu_seq_lens), (max_length, max_length)) def _flash_attention_forward( query_states: torch.Tensor, key_states: torch.Tensor, value_states: torch.Tensor, attention_mask: torch.Tensor, query_length: int, is_causal: bool, dropout: float = 0.0, position_ids: Optional[torch.Tensor] = None, softmax_scale: Optional[float] = None, sliding_window: Optional[int] = None, use_top_left_mask: bool = False, softcap: Optional[float] = None, deterministic: bool = None, cu_seqlens=None, ): if not use_top_left_mask: causal = is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__. causal = is_causal and query_length != 1 # Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length). use_sliding_windows = ( _flash_supports_window_size and sliding_window is not None and key_states.shape[1] > sliding_window ) flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sliding_windows else {} if is_flash_attn_greater_or_equal("2.4.1"): if deterministic is None: deterministic = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1" flash_kwargs["deterministic"] = deterministic if softcap is not None: flash_kwargs["softcap"] = softcap # Contains at least one padding token in the sequence if attention_mask is not None or cu_seqlens is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input( query_states, key_states, value_states, attention_mask, query_length, cu_seqlens ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs, ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) # If position_ids is provided and check all examples do not contain only 1 sequence, If tensor in increasing # then we probably have one sequence, otherwise it is packed. Additionally check we are in pre-fill/training stage. # Use `flash_attn_varlen_func` to prevent cross-example attention and also allow padding free approach # Note: the `torch.diff(...)` condition is last to use short-circuit and avoid the cuda synchronization it incurs during inference (query_length == 1 always) elif position_ids is not None and query_length != 1 and not (torch.diff(position_ids, dim=-1) >= 0).all(): batch_size = query_states.size(0) query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = prepare_fa2_from_position_ids( query_states, key_states, value_states, position_ids ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs, ) attn_output = attn_output.view(batch_size, -1, attn_output.size(-2), attn_output.size(-1)) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs ) return attn_output