670 lines
26 KiB
Python
670 lines
26 KiB
Python
|
#!/usr/bin/env python
|
||
|
# -*- coding: utf-8 -*-
|
||
|
#
|
||
|
# Copyright @2024 AI. Inspur Inc.
|
||
|
#
|
||
|
# @author: sunxian <sunxian@inspur.com>
|
||
|
# @date: 2024/07/18
|
||
|
#
|
||
|
|
||
|
import math
|
||
|
from typing import Any
|
||
|
from typing import Dict
|
||
|
from typing import Iterable
|
||
|
from typing import List
|
||
|
from typing import Optional
|
||
|
from typing import Tuple
|
||
|
from typing import Union
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
from torch.nn import BCEWithLogitsLoss
|
||
|
from torch.nn import CrossEntropyLoss
|
||
|
from torch.nn import MSELoss
|
||
|
|
||
|
from vllm.attention import Attention, AttentionMetadata
|
||
|
from vllm.compilation.decorators import support_torch_compile
|
||
|
from vllm.config import CacheConfig, LoRAConfig
|
||
|
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
|
||
|
get_tensor_model_parallel_world_size)
|
||
|
from vllm.model_executor.layers.activation import SiluAndMul
|
||
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
||
|
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
||
|
QKVParallelLinear,
|
||
|
RowParallelLinear)
|
||
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||
|
from vllm.model_executor.layers.pooler import Pooler, PoolingType
|
||
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||
|
from vllm.model_executor.layers.quantization.compressed_tensors.utils import (
|
||
|
get_compressed_tensors_cache_scale)
|
||
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||
|
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
|
||
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||
|
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||
|
from vllm.model_executor.model_loader.weight_utils import (
|
||
|
default_weight_loader, kv_cache_scales_loader, maybe_remap_kv_scale_name)
|
||
|
from vllm.model_executor.pooling_metadata import PoolingMetadata
|
||
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||
|
from vllm.sequence import IntermediateTensors, PoolerOutput
|
||
|
from vllm.utils import is_hip
|
||
|
|
||
|
from vllm.model_executor.models.interfaces import SupportsLoRA, SupportsPP
|
||
|
from vllm.model_executor.models.utils import (AutoWeightsLoader, PPMissingLayer, is_pp_missing_parameter,
|
||
|
make_empty_intermediate_tensors_factory, make_layers)
|
||
|
|
||
|
from .configuration_hairuo import HairuoConfig
|
||
|
|
||
|
|
||
|
class HairuoMLP(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
hidden_size: int,
|
||
|
intermediate_size: int,
|
||
|
hidden_act: str,
|
||
|
quant_config: Optional[QuantizationConfig] = None,
|
||
|
bias: bool = False,
|
||
|
prefix: str = "",
|
||
|
) -> None:
|
||
|
super().__init__()
|
||
|
self.gate_up_proj = MergedColumnParallelLinear(
|
||
|
input_size=hidden_size,
|
||
|
output_sizes=[intermediate_size] * 2,
|
||
|
bias=bias,
|
||
|
quant_config=quant_config,
|
||
|
prefix=f"{prefix}.gate_up_proj",
|
||
|
)
|
||
|
self.down_proj = RowParallelLinear(
|
||
|
input_size=intermediate_size,
|
||
|
output_size=hidden_size,
|
||
|
bias=bias,
|
||
|
quant_config=quant_config,
|
||
|
prefix=f"{prefix}.down_proj",
|
||
|
)
|
||
|
if hidden_act != "silu":
|
||
|
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||
|
"Only silu is supported for now.")
|
||
|
self.act_fn = SiluAndMul()
|
||
|
|
||
|
def forward(self, x):
|
||
|
gate_up, _ = self.gate_up_proj(x)
|
||
|
x = self.act_fn(gate_up)
|
||
|
x, _ = self.down_proj(x)
|
||
|
return x
|
||
|
|
||
|
class HairuoAttention(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
config: HairuoConfig,
|
||
|
hidden_size: int,
|
||
|
num_heads: int,
|
||
|
num_kv_heads: int,
|
||
|
rope_theta: float = 10000,
|
||
|
rope_scaling: Optional[Dict[str, Any]] = None,
|
||
|
max_position_embeddings: int = 8192,
|
||
|
quant_config: Optional[QuantizationConfig] = None,
|
||
|
bias: bool = False,
|
||
|
cache_config: Optional[CacheConfig] = None,
|
||
|
prefix: str = "",
|
||
|
) -> None:
|
||
|
super().__init__()
|
||
|
self.hidden_size = hidden_size
|
||
|
tp_size = get_tensor_model_parallel_world_size()
|
||
|
self.total_num_heads = num_heads
|
||
|
assert self.total_num_heads % tp_size == 0
|
||
|
self.num_heads = self.total_num_heads // tp_size
|
||
|
self.total_num_kv_heads = num_kv_heads
|
||
|
if self.total_num_kv_heads >= tp_size:
|
||
|
# Number of KV heads is greater than TP size, so we partition
|
||
|
# the KV heads across multiple tensor parallel GPUs.
|
||
|
assert self.total_num_kv_heads % tp_size == 0
|
||
|
else:
|
||
|
# Number of KV heads is less than TP size, so we replicate
|
||
|
# the KV heads across multiple tensor parallel GPUs.
|
||
|
assert tp_size % self.total_num_kv_heads == 0
|
||
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||
|
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
|
||
|
self.head_dim = getattr(config, "head_dim",
|
||
|
self.hidden_size // self.total_num_heads)
|
||
|
self.q_size = self.num_heads * self.head_dim
|
||
|
self.kv_size = self.num_kv_heads * self.head_dim
|
||
|
self.scaling = self.head_dim**-0.5
|
||
|
self.rope_theta = rope_theta
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
|
||
|
self.qkv_proj = QKVParallelLinear(
|
||
|
hidden_size=hidden_size,
|
||
|
head_size=self.head_dim,
|
||
|
total_num_heads=self.total_num_heads,
|
||
|
total_num_kv_heads=self.total_num_kv_heads,
|
||
|
bias=bias,
|
||
|
quant_config=quant_config,
|
||
|
prefix=f"{prefix}.qkv_proj",
|
||
|
)
|
||
|
|
||
|
self.o_proj = RowParallelLinear(
|
||
|
input_size=self.total_num_heads * self.head_dim,
|
||
|
output_size=hidden_size,
|
||
|
bias=bias,
|
||
|
quant_config=quant_config,
|
||
|
prefix=f"{prefix}.o_proj",
|
||
|
)
|
||
|
|
||
|
is_neox_style = True
|
||
|
if quant_config is not None and quant_config.get_name() == "gguf":
|
||
|
is_neox_style = False
|
||
|
|
||
|
self.rotary_emb = get_rope(
|
||
|
self.head_dim,
|
||
|
rotary_dim=self.head_dim,
|
||
|
max_position=max_position_embeddings,
|
||
|
base=rope_theta,
|
||
|
rope_scaling=rope_scaling,
|
||
|
is_neox_style=is_neox_style,
|
||
|
)
|
||
|
self.rotary_emb.cos_sin_cache = self.rotary_emb._compute_cos_sin_cache()
|
||
|
self.attn = Attention(
|
||
|
self.num_heads,
|
||
|
self.head_dim,
|
||
|
self.scaling,
|
||
|
num_kv_heads=self.num_kv_heads,
|
||
|
cache_config=cache_config,
|
||
|
quant_config=quant_config,
|
||
|
)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
positions: torch.Tensor,
|
||
|
hidden_states: torch.Tensor,
|
||
|
kv_cache: torch.Tensor,
|
||
|
attn_metadata: AttentionMetadata,
|
||
|
) -> torch.Tensor:
|
||
|
qkv, _ = self.qkv_proj(hidden_states)
|
||
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||
|
# orig_dtype = q.dtype
|
||
|
# q, k = q.float(), k.float()
|
||
|
q, k = self.rotary_emb(positions, q, k)
|
||
|
# q, k = q.to(orig_dtype), k.to(orig_dtype)
|
||
|
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
||
|
output, _ = self.o_proj(attn_output)
|
||
|
return output
|
||
|
|
||
|
|
||
|
class HairuoDecoderLayer(nn.Module):
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
config: HairuoConfig,
|
||
|
cache_config: Optional[CacheConfig] = None,
|
||
|
quant_config: Optional[QuantizationConfig] = None,
|
||
|
prefix: str = "",
|
||
|
) -> None:
|
||
|
super().__init__()
|
||
|
self.hidden_size = config.hidden_size
|
||
|
self.mup_scale_hidden_states = config.mup_scale_depth / math.sqrt(config.num_hidden_layers)
|
||
|
rope_theta = getattr(config, "rope_theta", 10000)
|
||
|
rope_scaling = getattr(config, "rope_scaling", None)
|
||
|
if rope_scaling is not None and getattr(
|
||
|
config, "original_max_position_embeddings", None):
|
||
|
rope_scaling["original_max_position_embeddings"] = (
|
||
|
config.original_max_position_embeddings)
|
||
|
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||
|
8192)
|
||
|
attention_bias = getattr(config, "attention_bias", False) or getattr(
|
||
|
config, "bias", False)
|
||
|
self.self_attn = HairuoAttention(
|
||
|
config=config,
|
||
|
hidden_size=self.hidden_size,
|
||
|
num_heads=config.num_attention_heads,
|
||
|
num_kv_heads=getattr(config, "num_key_value_heads",
|
||
|
config.num_attention_heads),
|
||
|
rope_theta=rope_theta,
|
||
|
rope_scaling=rope_scaling,
|
||
|
max_position_embeddings=max_position_embeddings,
|
||
|
quant_config=quant_config,
|
||
|
bias=attention_bias,
|
||
|
cache_config=cache_config,
|
||
|
prefix=f"{prefix}.self_attn",
|
||
|
)
|
||
|
self.mlp = HairuoMLP(
|
||
|
hidden_size=self.hidden_size,
|
||
|
intermediate_size=config.intermediate_size,
|
||
|
hidden_act=config.hidden_act,
|
||
|
quant_config=quant_config,
|
||
|
bias=getattr(config, "mlp_bias", False),
|
||
|
prefix=f"{prefix}.mlp",
|
||
|
)
|
||
|
self.input_layernorm = RMSNorm(config.hidden_size,
|
||
|
eps=config.rms_norm_eps)
|
||
|
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||
|
eps=config.rms_norm_eps)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
positions: torch.Tensor,
|
||
|
hidden_states: torch.Tensor,
|
||
|
kv_cache: torch.Tensor,
|
||
|
attn_metadata: AttentionMetadata,
|
||
|
residual: Optional[torch.Tensor],
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
# Self Attention
|
||
|
if residual is None:
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.input_layernorm(hidden_states)
|
||
|
else:
|
||
|
hidden_states, residual = self.input_layernorm(
|
||
|
hidden_states, residual)
|
||
|
hidden_states = self.self_attn(positions=positions,
|
||
|
hidden_states=hidden_states,
|
||
|
kv_cache=kv_cache,
|
||
|
attn_metadata=attn_metadata)
|
||
|
hidden_states = residual + hidden_states * self.mup_scale_hidden_states
|
||
|
# Fully Connected
|
||
|
residual = hidden_states
|
||
|
hidden_states= self.post_attention_layernorm(hidden_states)
|
||
|
hidden_states = self.mlp(hidden_states)
|
||
|
hidden_states = residual + hidden_states * self.mup_scale_hidden_states
|
||
|
return hidden_states, residual
|
||
|
|
||
|
|
||
|
class HairuoModel(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
config: HairuoConfig,
|
||
|
cache_config: Optional[CacheConfig] = None,
|
||
|
quant_config: Optional[QuantizationConfig] = None,
|
||
|
lora_config: Optional[LoRAConfig] = None,
|
||
|
prefix: str = "",
|
||
|
) -> None:
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.padding_idx = config.pad_token_id
|
||
|
lora_vocab = (lora_config.lora_extra_vocab_size *
|
||
|
(lora_config.max_loras or 1)) if lora_config else 0
|
||
|
self.vocab_size = config.vocab_size + lora_vocab
|
||
|
self.org_vocab_size = config.vocab_size
|
||
|
if get_pp_group().is_first_rank or (config.tie_word_embeddings
|
||
|
and get_pp_group().is_last_rank):
|
||
|
self.embed_tokens = VocabParallelEmbedding(
|
||
|
self.vocab_size,
|
||
|
config.hidden_size,
|
||
|
org_num_embeddings=config.vocab_size,
|
||
|
quant_config=quant_config,
|
||
|
)
|
||
|
else:
|
||
|
self.embed_tokens = PPMissingLayer()
|
||
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
||
|
config.num_hidden_layers,
|
||
|
lambda prefix: HairuoDecoderLayer(config=config,
|
||
|
cache_config=cache_config,
|
||
|
quant_config=quant_config,
|
||
|
prefix=prefix),
|
||
|
prefix=f"{prefix}.layers",
|
||
|
)
|
||
|
if get_pp_group().is_last_rank:
|
||
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||
|
else:
|
||
|
self.norm = PPMissingLayer()
|
||
|
|
||
|
self.make_empty_intermediate_tensors = (
|
||
|
make_empty_intermediate_tensors_factory(
|
||
|
["hidden_states", "residual"], config.hidden_size))
|
||
|
|
||
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||
|
return self.embed_tokens(input_ids) * self.config.mup_scale_emb
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor],
|
||
|
positions: torch.Tensor,
|
||
|
kv_caches: List[torch.Tensor],
|
||
|
attn_metadata: AttentionMetadata,
|
||
|
intermediate_tensors: Optional[IntermediateTensors],
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
||
|
if get_pp_group().is_first_rank:
|
||
|
if inputs_embeds is not None:
|
||
|
hidden_states = inputs_embeds
|
||
|
else:
|
||
|
hidden_states = self.get_input_embeddings(input_ids)
|
||
|
residual = None
|
||
|
else:
|
||
|
assert intermediate_tensors is not None
|
||
|
hidden_states = intermediate_tensors["hidden_states"]
|
||
|
residual = intermediate_tensors["residual"]
|
||
|
|
||
|
for i in range(self.start_layer, self.end_layer):
|
||
|
layer = self.layers[i]
|
||
|
hidden_states, residual = layer(positions, hidden_states,
|
||
|
kv_caches[i - self.start_layer],
|
||
|
attn_metadata, residual)
|
||
|
|
||
|
if not get_pp_group().is_last_rank:
|
||
|
return IntermediateTensors({
|
||
|
"hidden_states": hidden_states,
|
||
|
"residual": residual
|
||
|
})
|
||
|
|
||
|
hidden_states, _ = self.norm(hidden_states, residual)
|
||
|
return hidden_states
|
||
|
"""
|
||
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
||
|
stacked_params_mapping = [
|
||
|
# (param_name, shard_name, shard_id)
|
||
|
(".qkv_proj", ".q_proj", "q"),
|
||
|
(".qkv_proj", ".k_proj", "k"),
|
||
|
(".qkv_proj", ".v_proj", "v"),
|
||
|
(".gate_up_proj", ".gate_proj", 0),
|
||
|
(".gate_up_proj", ".up_proj", 1),
|
||
|
]
|
||
|
params_dict = dict(self.named_parameters())
|
||
|
for name, loaded_weight in weights:
|
||
|
if "rotary_emb.inv_freq" in name:
|
||
|
continue
|
||
|
if ("rotary_emb.cos_cached" in name
|
||
|
or "rotary_emb.sin_cached" in name):
|
||
|
# Models trained using ColossalAI may include these tensors in
|
||
|
# the checkpoint. Skip them.
|
||
|
continue
|
||
|
if scale_name := get_compressed_tensors_cache_scale(name):
|
||
|
# Loading kv cache scales for compressed-tensors quantization
|
||
|
param = params_dict[scale_name]
|
||
|
weight_loader = getattr(param, "weight_loader",
|
||
|
default_weight_loader)
|
||
|
loaded_weight = loaded_weight[0]
|
||
|
weight_loader(param, loaded_weight)
|
||
|
continue
|
||
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
||
|
if weight_name not in name:
|
||
|
continue
|
||
|
name = name.replace(weight_name, param_name)
|
||
|
# Skip loading extra bias for GPTQ models.
|
||
|
if name.endswith(".bias") and name not in params_dict:
|
||
|
continue
|
||
|
|
||
|
if is_pp_missing_parameter(name, self):
|
||
|
continue
|
||
|
|
||
|
param = params_dict[name]
|
||
|
weight_loader = param.weight_loader
|
||
|
weight_loader(param, loaded_weight, shard_id)
|
||
|
|
||
|
break
|
||
|
else:
|
||
|
# Skip loading extra bias for GPTQ models.
|
||
|
if name.endswith(".bias") and name not in params_dict:
|
||
|
continue
|
||
|
# Remapping the name of FP8 kv-scale.
|
||
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
||
|
if name is None:
|
||
|
continue
|
||
|
|
||
|
if is_pp_missing_parameter(name, self):
|
||
|
continue
|
||
|
|
||
|
param = params_dict[name]
|
||
|
weight_loader = getattr(param, "weight_loader",
|
||
|
default_weight_loader)
|
||
|
weight_loader(param, loaded_weight)
|
||
|
|
||
|
# If this function is called, it should always initialize KV cache scale
|
||
|
# factors (or else raise an exception). Thus, handled exceptions should
|
||
|
# make sure to leave KV cache scale factors in a known good (dummy) state
|
||
|
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
|
||
|
tp_size = get_tensor_model_parallel_world_size()
|
||
|
tp_rank = get_tensor_model_parallel_rank()
|
||
|
for layer_idx, scaling_factor in kv_cache_scales_loader(
|
||
|
quantization_param_path, tp_rank, tp_size,
|
||
|
self.config.num_hidden_layers,
|
||
|
self.config.__class__.model_type):
|
||
|
if not isinstance(self.layers[layer_idx], nn.Identity):
|
||
|
layer_self_attn = self.layers[layer_idx].self_attn
|
||
|
|
||
|
if is_hip():
|
||
|
# The scaling factor convention we are assuming is
|
||
|
# quantized_value * scaling_factor ~= true_value
|
||
|
# which is consistent with the practice of setting
|
||
|
# scaling_factor = tensor_amax / FPtype_max
|
||
|
scaling_factor *= 2
|
||
|
if hasattr(layer_self_attn, "kv_scale"):
|
||
|
layer_self_attn.attn._kv_scale = scaling_factor
|
||
|
else:
|
||
|
raise RuntimeError("Self attention has no KV cache scaling "
|
||
|
"factor attribute!")
|
||
|
"""
|
||
|
|
||
|
class HairuoForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||
|
|
||
|
packed_modules_mapping = {
|
||
|
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
||
|
"gate_up_proj": ["gate_proj", "up_proj"]
|
||
|
}
|
||
|
|
||
|
# LoRA specific attributes
|
||
|
supported_lora_modules = [
|
||
|
"qkv_proj", "o_proj", "gate_up_proj", "down_proj", "embed_tokens",
|
||
|
"lm_head"
|
||
|
]
|
||
|
embedding_modules = {
|
||
|
"embed_tokens": "input_embeddings",
|
||
|
"lm_head": "output_embeddings"
|
||
|
}
|
||
|
embedding_padding_modules = ["lm_head"]
|
||
|
|
||
|
# BitandBytes specific attributes
|
||
|
default_bitsandbytes_target_modules = [
|
||
|
".gate_proj.",
|
||
|
".down_proj.",
|
||
|
".up_proj.",
|
||
|
".q_proj.",
|
||
|
".k_proj.",
|
||
|
".v_proj.",
|
||
|
".o_proj.",
|
||
|
]
|
||
|
# in TP, these weights are partitioned along the column dimension (dim=-1)
|
||
|
column_parallel_weights_modules = [".down_proj.", ".o_proj."]
|
||
|
bitsandbytes_stacked_params_mapping = {
|
||
|
# shard_name, weight_name, index
|
||
|
"q_proj": ("qkv_proj", 0),
|
||
|
"k_proj": ("qkv_proj", 1),
|
||
|
"v_proj": ("qkv_proj", 2),
|
||
|
"gate_proj": ("gate_up_proj", 0),
|
||
|
"up_proj": ("gate_up_proj", 1),
|
||
|
}
|
||
|
|
||
|
mistral_mapping = {
|
||
|
"layers": "model.layers",
|
||
|
"attention": "self_attn",
|
||
|
"wq": "q_proj",
|
||
|
"wk": "k_proj",
|
||
|
"wv": "v_proj",
|
||
|
"wo": "o_proj",
|
||
|
"attention_norm": "input_layernorm",
|
||
|
"feed_forward": "mlp",
|
||
|
"w1": "gate_proj",
|
||
|
"w2": "down_proj",
|
||
|
"w3": "up_proj",
|
||
|
"ffn_norm": "post_attention_layernorm",
|
||
|
"tok_embeddings": "model.embed_tokens",
|
||
|
"output": "lm_head",
|
||
|
"norm": "model.norm"
|
||
|
}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
config: HairuoConfig,
|
||
|
cache_config: Optional[CacheConfig] = None,
|
||
|
quant_config: Optional[QuantizationConfig] = None,
|
||
|
lora_config: Optional[LoRAConfig] = None
|
||
|
) -> None:
|
||
|
super().__init__()
|
||
|
|
||
|
self.config = config
|
||
|
self.lora_config = lora_config
|
||
|
|
||
|
self.model = HairuoModel(config,
|
||
|
cache_config,
|
||
|
quant_config,
|
||
|
lora_config = lora_config,
|
||
|
prefix="model")
|
||
|
|
||
|
if get_pp_group().is_last_rank:
|
||
|
self.unpadded_vocab_size = config.vocab_size
|
||
|
if lora_config:
|
||
|
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
||
|
self.lm_head = ParallelLMHead(
|
||
|
self.unpadded_vocab_size,
|
||
|
config.hidden_size,
|
||
|
org_num_embeddings=config.vocab_size,
|
||
|
padding_size=(
|
||
|
DEFAULT_VOCAB_PADDING_SIZE
|
||
|
# We need bigger padding if using lora for kernel
|
||
|
# compatibility
|
||
|
if not lora_config else
|
||
|
lora_config.lora_vocab_padding_size),
|
||
|
quant_config=quant_config,
|
||
|
)
|
||
|
if config.tie_word_embeddings:
|
||
|
self.lm_head = self.lm_head.tie_weights(
|
||
|
self.model.embed_tokens)
|
||
|
|
||
|
logit_scale = getattr(config, "logit_scale", 1.0)
|
||
|
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
||
|
config.vocab_size,
|
||
|
logit_scale)
|
||
|
self.sampler = Sampler()
|
||
|
else:
|
||
|
self.lm_head = PPMissingLayer()
|
||
|
self.make_empty_intermediate_tensors = (
|
||
|
self.model.make_empty_intermediate_tensors)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: torch.Tensor,
|
||
|
positions: torch.Tensor,
|
||
|
kv_caches: List[torch.Tensor],
|
||
|
attn_metadata: AttentionMetadata,
|
||
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
||
|
model_output = self.model(input_ids, positions, kv_caches,
|
||
|
attn_metadata, intermediate_tensors)
|
||
|
return model_output
|
||
|
|
||
|
def compute_logits(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
sampling_metadata: SamplingMetadata,
|
||
|
) -> Optional[torch.Tensor]:
|
||
|
hidden_states = hidden_states / self.config.mup_scale_width
|
||
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
||
|
sampling_metadata)
|
||
|
return logits
|
||
|
|
||
|
def sample(self, logits: torch.Tensor,
|
||
|
sampling_metadata: SamplingMetadata) -> Optional[SamplerOutput]:
|
||
|
next_tokens = self.sampler(logits, sampling_metadata)
|
||
|
return next_tokens
|
||
|
|
||
|
|
||
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
||
|
stacked_params_mapping = [
|
||
|
# (param_name, shard_name, shard_id)
|
||
|
(".qkv_proj", ".q_proj", "q"),
|
||
|
(".qkv_proj", ".k_proj", "k"),
|
||
|
(".qkv_proj", ".v_proj", "v"),
|
||
|
(".gate_up_proj", ".gate_proj", 0),
|
||
|
(".gate_up_proj", ".up_proj", 1),
|
||
|
]
|
||
|
params_dict = dict(self.named_parameters())
|
||
|
for name, loaded_weight in weights:
|
||
|
if "rotary_emb.inv_freq" in name:
|
||
|
continue
|
||
|
if ("rotary_emb.cos_cached" in name
|
||
|
or "rotary_emb.sin_cached" in name):
|
||
|
# Models trained using ColossalAI may include these tensors in
|
||
|
# the checkpoint. Skip them.
|
||
|
continue
|
||
|
if scale_name := get_compressed_tensors_cache_scale(name):
|
||
|
# Loading kv cache scales for compressed-tensors quantization
|
||
|
param = params_dict[scale_name]
|
||
|
weight_loader = getattr(param, "weight_loader",
|
||
|
default_weight_loader)
|
||
|
loaded_weight = loaded_weight[0]
|
||
|
weight_loader(param, loaded_weight)
|
||
|
continue
|
||
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
||
|
if weight_name not in name:
|
||
|
continue
|
||
|
name = name.replace(weight_name, param_name)
|
||
|
# Skip loading extra bias for GPTQ models.
|
||
|
if name.endswith(".bias") and name not in params_dict:
|
||
|
continue
|
||
|
|
||
|
if is_pp_missing_parameter(name, self):
|
||
|
continue
|
||
|
|
||
|
param = params_dict[name]
|
||
|
weight_loader = param.weight_loader
|
||
|
weight_loader(param, loaded_weight, shard_id)
|
||
|
|
||
|
break
|
||
|
else:
|
||
|
# Skip loading extra bias for GPTQ models.
|
||
|
if name.endswith(".bias") and name not in params_dict:
|
||
|
continue
|
||
|
# Remapping the name of FP8 kv-scale.
|
||
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
||
|
if name is None:
|
||
|
continue
|
||
|
|
||
|
if is_pp_missing_parameter(name, self):
|
||
|
continue
|
||
|
|
||
|
param = params_dict[name]
|
||
|
weight_loader = getattr(param, "weight_loader",
|
||
|
default_weight_loader)
|
||
|
weight_loader(param, loaded_weight)
|
||
|
|
||
|
|
||
|
|
||
|
"""
|
||
|
loader = AutoWeightsLoader(
|
||
|
self,
|
||
|
skip_prefixes=(["lm_head."]
|
||
|
if self.config.tie_word_embeddings else None),
|
||
|
)
|
||
|
loader.load_weights(
|
||
|
self.maybe_remap_mistral(name, loaded_weight)
|
||
|
for name, loaded_weight in weights)
|
||
|
"""
|
||
|
|
||
|
def maybe_remap_mistral(
|
||
|
self,
|
||
|
name: str,
|
||
|
loaded_weight: torch.Tensor,
|
||
|
) -> Tuple[str, torch.Tensor]:
|
||
|
|
||
|
def permute(w: torch.Tensor, n_heads: int):
|
||
|
attn_in = self.config.head_dim * n_heads
|
||
|
attn_out = self.config.hidden_size
|
||
|
|
||
|
return w.view(n_heads, attn_in // n_heads // 2, 2,
|
||
|
attn_out).transpose(1, 2).reshape(attn_in, attn_out)
|
||
|
|
||
|
mapping = self.mistral_mapping
|
||
|
modules = name.split(".")
|
||
|
|
||
|
# rotary embeds should be sliced
|
||
|
if "wk" in modules:
|
||
|
loaded_weight = permute(loaded_weight,
|
||
|
self.config.num_key_value_heads)
|
||
|
elif "wq" in modules:
|
||
|
loaded_weight = permute(loaded_weight,
|
||
|
self.config.num_attention_heads)
|
||
|
|
||
|
for item in modules:
|
||
|
if item in mapping and mapping[item] not in name:
|
||
|
name = name.replace(item, mapping[item])
|
||
|
|
||
|
return name, loaded_weight
|
||
|
|