mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
183 lines
6.1 KiB
Python
183 lines
6.1 KiB
Python
import time
|
||
from concurrent.futures import ThreadPoolExecutor
|
||
from typing import Dict, List, Optional, Union
|
||
|
||
import requests
|
||
|
||
from opencompass.utils.prompt import PromptList
|
||
|
||
from .base_api import BaseAPIModel
|
||
|
||
PromptType = Union[PromptList, str]
|
||
|
||
|
||
class MiniMax(BaseAPIModel):
|
||
"""Model wrapper around MiniMax.
|
||
|
||
Documentation: https://api.minimax.chat/document/guides/chat-pro
|
||
|
||
Args:
|
||
path (str): The name of MiniMax model.
|
||
e.g. `abab5.5-chat`
|
||
model_type (str): The type of the model
|
||
e.g. `chat`
|
||
group_id (str): The id of group(like the org ID of group)
|
||
key (str): Authorization key.
|
||
query_per_second (int): The maximum queries allowed per second
|
||
between two consecutive calls of the API. Defaults to 1.
|
||
max_seq_len (int): Unused here.
|
||
meta_template (Dict, optional): The model's meta prompt
|
||
template if needed, in case the requirement of injecting or
|
||
wrapping of any meta instructions.
|
||
retry (int): Number of retires if the API call fails. Defaults to 2.
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
path: str,
|
||
key: str,
|
||
group_id: str,
|
||
model_type: str = 'chat',
|
||
url:
|
||
str = 'https://api.minimax.chat/v1/text/chatcompletion_pro?GroupId=',
|
||
query_per_second: int = 2,
|
||
max_seq_len: int = 2048,
|
||
meta_template: Optional[Dict] = None,
|
||
retry: int = 2,
|
||
):
|
||
super().__init__(path=path,
|
||
max_seq_len=max_seq_len,
|
||
query_per_second=query_per_second,
|
||
meta_template=meta_template,
|
||
retry=retry)
|
||
self.headers = {
|
||
'Authorization': f'Bearer {key}',
|
||
'Content-Type': 'application/json',
|
||
}
|
||
self.type = model_type
|
||
self.url = url + group_id
|
||
self.model = path
|
||
|
||
def generate(
|
||
self,
|
||
inputs: List[PromptType],
|
||
max_out_len: int = 512,
|
||
) -> List[str]:
|
||
"""Generate results given a list of inputs.
|
||
|
||
Args:
|
||
inputs (List[PromptType]): A list of strings or PromptDicts.
|
||
The PromptDict should be organized in OpenCompass'
|
||
API format.
|
||
max_out_len (int): The maximum length of the output.
|
||
|
||
Returns:
|
||
List[str]: A list of generated strings.
|
||
"""
|
||
with ThreadPoolExecutor() as executor:
|
||
results = list(
|
||
executor.map(self._generate, inputs,
|
||
[max_out_len] * len(inputs)))
|
||
self.flush()
|
||
return results
|
||
|
||
def _generate(
|
||
self,
|
||
input: PromptType,
|
||
max_out_len: int = 512,
|
||
) -> str:
|
||
"""Generate results given an input.
|
||
|
||
Args:
|
||
inputs (PromptType): A string or PromptDict.
|
||
The PromptDict should be organized in Test'
|
||
API format.
|
||
max_out_len (int): The maximum length of the output.
|
||
|
||
Returns:
|
||
str: The generated string.
|
||
"""
|
||
assert isinstance(input, (str, PromptList))
|
||
|
||
if isinstance(input, str):
|
||
messages = [{
|
||
'sender_type': 'USER',
|
||
'sender_name': 'Test',
|
||
'text': input
|
||
}]
|
||
else:
|
||
messages = []
|
||
for item in input:
|
||
msg = {'text': item['prompt']}
|
||
if item['role'] == 'HUMAN':
|
||
msg['sender_type'] = 'USER'
|
||
msg['sender_name'] = 'Test'
|
||
elif item['role'] == 'BOT':
|
||
msg['sender_type'] = 'BOT'
|
||
msg['sender_name'] = 'MM智能助理'
|
||
|
||
messages.append(msg)
|
||
|
||
data = {
|
||
'bot_setting': [{
|
||
'bot_name':
|
||
'MM智能助理',
|
||
'content':
|
||
'MM智能助理是一款由MiniMax自研的,没有调用其他产品的接口的大型语言模型。' +
|
||
'MiniMax是一家中国科技公司,一直致力于进行大模型相关的研究。'
|
||
}],
|
||
'reply_constraints': {
|
||
'sender_type': 'BOT',
|
||
'sender_name': 'MM智能助理'
|
||
},
|
||
'model':
|
||
self.model,
|
||
'messages':
|
||
messages
|
||
}
|
||
max_num_retries = 0
|
||
while max_num_retries < self.retry:
|
||
self.acquire()
|
||
try:
|
||
raw_response = requests.request('POST',
|
||
url=self.url,
|
||
headers=self.headers,
|
||
json=data)
|
||
response = raw_response.json()
|
||
except Exception as err:
|
||
print('Request Error:{}'.format(err))
|
||
time.sleep(3)
|
||
continue
|
||
self.release()
|
||
|
||
if response is None:
|
||
print('Connection error, reconnect.')
|
||
# if connect error, frequent requests will casuse
|
||
# continuous unstable network, therefore wait here
|
||
# to slow down the request
|
||
self.wait()
|
||
continue
|
||
if raw_response.status_code == 200:
|
||
# msg = json.load(response.text)
|
||
# response
|
||
msg = response['reply']
|
||
# msg = response['choices']['messages']['text']
|
||
return msg
|
||
# sensitive content, prompt overlength, network error
|
||
# or illegal prompt
|
||
if (response.status_code == 1000 or response.status_code == 1001
|
||
or response.status_code == 1002
|
||
or response.status_code == 1004
|
||
or response.status_code == 1008
|
||
or response.status_code == 1013
|
||
or response.status_code == 1027
|
||
or response.status_code == 1039
|
||
or response.status_code == 2013):
|
||
print(response.text)
|
||
time.sleep(1)
|
||
continue
|
||
print(response)
|
||
max_num_retries += 1
|
||
|
||
raise RuntimeError(response.text)
|