OpenCompass/configs/subjective_infer.py
2023-10-13 06:50:54 -05:00

123 lines
3.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from mmengine.config import read_base
with read_base():
from .datasets.subjectivity_cmp.subjectivity_cmp import subjectivity_datasets
from .summarizers.subjective import summarizer
datasets = [*subjectivity_datasets]
from opencompass.models import HuggingFaceCausalLM, HuggingFace, OpenAI
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
_meta_template = dict(
round=[
dict(role="HUMAN", begin='\n<|im_start|>user\n', end='<|im_end|>'),
dict(
role="BOT",
begin="\n<|im_start|>assistant\n",
end='<|im_end|>',
generate=True),
], )
_meta_template2 = dict(
round=[
dict(role='HUMAN', begin='<|User|>:', end='<eoh>\n'),
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
], )
models = [
dict(
type=HuggingFace,
abbr='chatglm2-6b-hf',
path='THUDM/chatglm2-6b',
tokenizer_path='THUDM/chatglm2-6b',
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
revision='b1502f4f75c71499a3d566b14463edd62620ce9f'),
max_out_len=100,
max_seq_len=2048,
batch_size=8,
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
revision='b1502f4f75c71499a3d566b14463edd62620ce9f'),
run_cfg=dict(num_gpus=1, num_procs=1),
),
dict(
type=HuggingFaceCausalLM,
abbr='qwen-7b-chat-hf',
path="/mnt/petrelfs/share_data/duanhaodong/Qwen-7B-Chat",
tokenizer_path='/mnt/petrelfs/share_data/duanhaodong/Qwen-7B-Chat',
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
use_fast=False,
),
pad_token_id=151643,
max_out_len=100,
max_seq_len=2048,
batch_size=8,
meta_template=_meta_template,
model_kwargs=dict(device_map='auto', trust_remote_code=True),
run_cfg=dict(num_gpus=1, num_procs=1),
),
dict(
type=HuggingFaceCausalLM,
abbr='internlm-chat-7b-hf',
path="internlm/internlm-chat-7b",
tokenizer_path='internlm/internlm-chat-7b',
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
trust_remote_code=True,
revision="ed5e35564ac836710817c51e8e8d0a5d4ff03102"),
max_out_len=100,
max_seq_len=2048,
batch_size=8,
meta_template=_meta_template2,
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
revision="ed5e35564ac836710817c51e8e8d0a5d4ff03102"),
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True)
],
reserved_roles=[
dict(role='SYSTEM', api_role='SYSTEM'),
],
)
eval = dict(
partitioner=dict(
type=SubjectiveNaivePartitioner,
mode='all', # 新参数
),
runner=dict(
type=LocalRunner,
max_num_workers=2, # 支持并行比较
task=dict(
type=SubjectiveEvalTask, # 新 task用来读入一对 model 的输入
judge_cfg=dict(
abbr='GPT4',
type=OpenAI,
path='gpt-4-0613',
key='ENV',
meta_template=api_meta_template,
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=2),
)),
)