mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
254 lines
9.5 KiB
Python
254 lines
9.5 KiB
Python
# flake8: noqa: E501
|
|
import importlib
|
|
import json
|
|
import os
|
|
from pathlib import Path
|
|
|
|
from ..evaluation.core_metrics import \
|
|
initialize_core_metric_evaluation_components
|
|
|
|
|
|
def initialize_error_identification_components(task, prompt_style):
|
|
"""Initialize error identification components.
|
|
|
|
Args:
|
|
task (str): The task for which error identification components are being initialized.
|
|
prompt_style (str): The style of prompt for error identification.
|
|
|
|
Returns:
|
|
Module: The error identification module corresponding to the provided task and prompt style.
|
|
"""
|
|
prompt_style_to_error_module_map = {
|
|
'basic': 'basic_adversarial',
|
|
'basic-CN': 'basic_adversarial',
|
|
'adversarial-ignore': 'basic_adversarial',
|
|
'adversarial-ignore-CN': 'basic_adversarial',
|
|
'adversarial-doubt': 'basic_adversarial',
|
|
'adversarial-doubt-CN': 'basic_adversarial',
|
|
'zero-shot-IcL': 'icl',
|
|
'zero-shot-IcL-CN': 'icl',
|
|
'one-shot-IcL': 'icl',
|
|
'one-shot-IcL-CN': 'icl',
|
|
'three-shot-IcL': 'icl',
|
|
'three-shot-IcL-CN': 'icl',
|
|
'zero-shot-CoT': 'cot',
|
|
'zero-shot-CoT-CN': 'cot',
|
|
'manual-CoT': 'cot',
|
|
'manual-CoT-CN': 'cot'
|
|
}
|
|
task_to_error_module_map = {
|
|
# association/
|
|
# correlation/
|
|
'CORR-B_correlation_CN': 'CLADDER',
|
|
'CORR-B_correlation_EN': 'CLADDER',
|
|
# explaining_away_effect/
|
|
'EAE-B_exp-away_CN': 'CLADDER',
|
|
'EAE-B_exp-away_EN': 'CLADDER',
|
|
# causal_discovery/
|
|
# abstract_reasoning/
|
|
'AR-B_CaLM-AR_CN': 'AR-B_CaLM-AR',
|
|
'AR-B_CaLM-AR_EN': 'AR-B_CaLM-AR',
|
|
# causal_attribution/
|
|
'CA-B_FA_CN': 'CA-B',
|
|
'CA-B_FA_EN': 'CA-B',
|
|
'CA-B_FP_CN': 'CA-B',
|
|
'CA-B_FP_EN': 'CA-B',
|
|
# event_causality_identification/
|
|
'ECI-B_CTB_CN': 'ECI',
|
|
'ECI-B_CTB_EN': 'ECI',
|
|
'ECI-B_ESC_CN': 'ECI',
|
|
'ECI-B_ESC_EN': 'ECI',
|
|
'ECI-B_MAVEN-ERE_CN': 'ECI',
|
|
'ECI-B_MAVEN-ERE_EN': 'ECI',
|
|
# pairwise_causal_discovery/
|
|
'PCD-B_COPA_CN': 'PCD-B',
|
|
'PCD-B_COPA_EN': 'PCD-B',
|
|
'PCD-B_E-CARE_CN': 'PCD-B',
|
|
'PCD-B_E-CARE_EN': 'PCD-B',
|
|
'PCD-C_COPA_CN': 'PCD-C',
|
|
'PCD-C_COPA_EN': 'PCD-C',
|
|
'PCD-C_E-CARE_CN': 'PCD-C',
|
|
'PCD-C_E-CARE_EN': 'PCD-C',
|
|
# counterfactual/
|
|
# actual_causality/
|
|
'AC-B_causal_judgement_CN': 'AC-B_causal_judgement',
|
|
'AC-B_causal_judgement_EN': 'AC-B_causal_judgement',
|
|
# counterfactual_reasoning/
|
|
'CR-B_det-counterfactual_CN': 'CLADDER',
|
|
'CR-B_det-counterfactual_EN': 'CLADDER',
|
|
'CR-C_CRASS_CN': 'CR-C_CRASS',
|
|
'CR-C_CRASS_EN': 'CR-C_CRASS',
|
|
# effect_of_the_treatment_on_the_treated/
|
|
'ETT-B_ETT-natural_CN': 'Natural',
|
|
'ETT-B_ETT-natural_EN': 'Natural',
|
|
'ETT-P_ETT-basic_CN': 'Probability',
|
|
'ETT-P_ETT-basic_EN': 'Probability',
|
|
'ETT-P_ETT-hard_CN': 'Probability',
|
|
'ETT-P_ETT-hard_EN': 'Probability',
|
|
# natural_direct_effect/
|
|
'NDE-B_NDE-natural_CN': 'Natural',
|
|
'NDE-B_NDE-natural_EN': 'Natural',
|
|
'NDE-P_NDE-basic_CN': 'Probability',
|
|
'NDE-P_NDE-basic_EN': 'Probability',
|
|
'NDE-P_NDE-hard_CN': 'Probability',
|
|
'NDE-P_NDE-hard_EN': 'Probability',
|
|
# natural_indirect_effect/
|
|
'NIE-B_NIE-natural_CN': 'Natural',
|
|
'NIE-B_NIE-natural_EN': 'Natural',
|
|
'NIE-P_NIE-basic_CN': 'Probability',
|
|
'NIE-P_NIE-basic_EN': 'Probability',
|
|
'NIE-P_NIE-hard_CN': 'Probability',
|
|
'NIE-P_NIE-hard_EN': 'Probability',
|
|
# probability_of_necessity/
|
|
'PN-P_PN-basic_CN': 'Probability',
|
|
'PN-P_PN-basic_EN': 'Probability',
|
|
'PN-P_PN-hard_CN': 'Probability',
|
|
'PN-P_PN-hard_EN': 'Probability',
|
|
# probability_of_sufficiency/
|
|
'PS-P_PS-basic_CN': 'Probability',
|
|
'PS-P_PS-basic_EN': 'Probability',
|
|
'PS-P_PS-hard_CN': 'Probability',
|
|
'PS-P_PS-hard_EN': 'Probability',
|
|
# intervention/
|
|
# average_treatment_effect/
|
|
'ATE-B_ATE-natural_CN': 'Natural',
|
|
'ATE-B_ATE-natural_EN': 'Natural',
|
|
'ATE-P_ATE-basic_CN': 'Probability',
|
|
'ATE-P_ATE-basic_EN': 'Probability',
|
|
'ATE-P_ATE-hard_CN': 'Probability',
|
|
'ATE-P_ATE-hard_EN': 'Probability',
|
|
# backdoor_adjustment_set/
|
|
'BAS-B_backadj_CN': 'CLADDER',
|
|
'BAS-B_backadj_EN': 'CLADDER',
|
|
'BAS-C_max-BAS_CN': 'AS',
|
|
'BAS-C_max-BAS_EN': 'AS',
|
|
'BAS-C_min-BAS_CN': 'AS',
|
|
'BAS-C_min-BAS_EN': 'AS',
|
|
'BAS-C_mix-BAS_CN': 'AS',
|
|
'BAS-C_mix-BAS_EN': 'AS',
|
|
# causal_effect_identification/
|
|
'CEI-B_0.2-UC_CN': 'CEI-B',
|
|
'CEI-B_0.2-UC_EN': 'CEI-B',
|
|
'CEI-B_0.4-UC_CN': 'CEI-B',
|
|
'CEI-B_0.4-UC_EN': 'CEI-B',
|
|
'CEI-B_0.6-UC_CN': 'CEI-B',
|
|
'CEI-B_0.6-UC_EN': 'CEI-B',
|
|
'CEI-B_0.8-UC_CN': 'CEI-B',
|
|
'CEI-B_0.8-UC_EN': 'CEI-B',
|
|
# collider_bias/
|
|
'CB-B_collider-bias_CN': 'CLADDER',
|
|
'CB-B_collider-bias_EN': 'CLADDER',
|
|
# controlled_direct_effect/
|
|
'CDE-B_CDE-natural_CN': 'Natural',
|
|
'CDE-B_CDE-natural_EN': 'Natural',
|
|
'CDE-P_CDE-basic_CN': 'Probability',
|
|
'CDE-P_CDE-basic_EN': 'Probability',
|
|
'CDE-P_CDE-hard_CN': 'Probability',
|
|
'CDE-P_CDE-hard_EN': 'Probability',
|
|
# frontdoor_adjustment_set/
|
|
'FAS-C_FAS_CN': 'AS',
|
|
'FAS-C_FAS_EN': 'AS',
|
|
# instrumental_variable/
|
|
'IV-C_CaLM-IV_CN': 'AS',
|
|
'IV-C_CaLM-IV_EN': 'AS',
|
|
}
|
|
|
|
error_task_module_name = task_to_error_module_map.get(task)
|
|
error_prompt_module_name = prompt_style_to_error_module_map.get(
|
|
prompt_style)
|
|
|
|
if error_task_module_name and error_prompt_module_name:
|
|
error_module = importlib.import_module(
|
|
f'opencompass.datasets.calm.evaluation.error.{error_prompt_module_name}.{error_task_module_name}'
|
|
)
|
|
return error_module
|
|
else:
|
|
raise NotImplementedError(
|
|
f'No get_score function found for task {task} and prompt {prompt_style}.'
|
|
)
|
|
|
|
|
|
def identify_model_errors(items, task, prompt_style, gt_items):
|
|
"""Identify errors in model responses based on provided items, task, and
|
|
prompt style.
|
|
|
|
Args:
|
|
items (list): A list of items containing model responses.
|
|
task (str): The task type, note that CEG-O_E-CARE is not supported for error analysis.
|
|
prompt_style (str): The style of prompt used, note that explicit-function is not supported for error analysis.
|
|
gt_items (list): A list of ground truth items.
|
|
|
|
Returns:
|
|
dict: A dictionary containing error metrics for the model responses. (Same response to all questions, language inconsistency, limitation of instruction-following, repetition, empty response.)
|
|
"""
|
|
if task == 'CEG-O_E-CARE' or prompt_style in [
|
|
'explicit-function', 'explicit-function-CN'
|
|
]:
|
|
print(
|
|
'CEG-O_E-CARE and explicit-function prompts are not supported for error identification.'
|
|
)
|
|
return
|
|
|
|
language_error, nonstandrad, repetition, empty = 0., 0., 0., 0.
|
|
error_module = initialize_error_identification_components(
|
|
task, prompt_style)
|
|
get_gt_label, get_pred_label, compute_acc = initialize_core_metric_evaluation_components(
|
|
task)
|
|
pred_list = []
|
|
|
|
for item, gt_item in zip(items, gt_items):
|
|
pred_label = get_pred_label(item, gt_item, prompt_style,
|
|
task.split('-')[0])
|
|
pred_error = get_item_error(item, task, error_module, prompt_style)
|
|
|
|
pred_list.append(pred_label)
|
|
language_error += pred_error['language_error']
|
|
nonstandrad += pred_error['nonstandrad']
|
|
repetition += pred_error['repetition']
|
|
empty += pred_error['empty']
|
|
|
|
abnormalities = error_module.check_abnormality(pred_list)
|
|
|
|
return {
|
|
'Same response to all questions': 1 if abnormalities != 0 else 0,
|
|
'Language inconsistency': language_error / len(pred_list),
|
|
'Limitation of instruction-following': nonstandrad / len(pred_list),
|
|
'Repetition': repetition / len(pred_list),
|
|
'Empty response': empty / len(pred_list),
|
|
}
|
|
|
|
|
|
def get_item_error(model_response, task, error_module, prompt_style):
|
|
"""Analyze errors in a single model response for a given task and prompt
|
|
style.
|
|
|
|
Args:
|
|
model_response (str): The model's response to analyze.
|
|
task (str): The task type.
|
|
error_module: The error module containing error identification methods.
|
|
prompt_style (str): The style of prompt used.
|
|
|
|
Returns:
|
|
dict: A dictionary containing error metrics for the model response. (Language inconsistency, nonstandardization, repetition, empty response.)
|
|
"""
|
|
model_response = model_response.strip().lower()
|
|
if 'CN' in task:
|
|
language_error = error_module.contains_english(model_response)
|
|
elif 'CN' not in task:
|
|
language_error = error_module.contains_chinese(model_response)
|
|
|
|
nonstandrad = error_module.check_standalization(model_response,
|
|
prompt_style,
|
|
type=task.split('-')[0])
|
|
|
|
repetition = error_module.check_repetition(model_response)
|
|
|
|
empty = error_module.check_empty(model_response)
|
|
|
|
return {
|
|
'language_error': language_error,
|
|
'nonstandrad': nonstandrad,
|
|
'repetition': repetition,
|
|
'empty': empty,
|
|
}
|