OpenCompass/opencompass/summarizers/subjective/compassbench.py
bittersweet1999 fa54aa62f6
[Feature] Add Judgerbench and reorg subeval (#1593)
* fix pip version

* fix pip version

* update (#1522)

Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>

* [Feature] Update Models (#1518)

* Update Models

* Update

* Update humanevalx

* Update

* Update

* [Feature] Dataset prompts update for ARC, BoolQ, Race (#1527)

add judgerbench and reorg sub

add judgerbench and reorg subeval

add judgerbench and reorg subeval

* add judgerbench and reorg subeval

* add judgerbench and reorg subeval

* add judgerbench and reorg subeval

* add judgerbench and reorg subeval

---------

Co-authored-by: zhulinJulia24 <145004780+zhulinJulia24@users.noreply.github.com>
Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
Co-authored-by: Songyang Zhang <tonysy@users.noreply.github.com>
Co-authored-by: Linchen Xiao <xxllcc1993@gmail.com>
2024-10-15 16:36:05 +08:00

189 lines
9.0 KiB
Python

# flake8: noqa
# yapf: disable
import csv
import os
import os.path as osp
import re
from collections import defaultdict
from datetime import datetime
from itertools import product
import numpy as np
import pandas as pd
from mmengine import ConfigDict
from tabulate import tabulate
from opencompass.partitioners.sub_naive import remove_duplicate_pairs
from opencompass.summarizers.subjective.compass_arena import (
check_position_bias, model_abbr_from_cfg_used_in_summarizer)
from opencompass.summarizers.subjective.utils import (
get_judgeanswer_and_reference, get_outdir)
from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg
def post_process_wildbench_pair(judgement: str):
pattern = r'\"choice\": \"(.*?)\"'
matched_result = re.findall(pattern, judgement)
if matched_result:
return matched_result[0]
else:
return None
MAP = {'language':['总分','中文总分','英文总分','自然语言处理_cn','创作_cn','对话_cn','NLP_en','creation_en','chat_en'],
'instruct':['总分','中文总分','英文总分',],
'reasoning':['总分','中文总分','英文总分','Common Sense Reasoning_cn','Social Reasoning_cn','Humanities (History, Finance, etc.) Professional Reasoning_cn', 'Science and Engineering Professional Reasoning_cn',
'Common Sense Reasoning_en','Social Reasoning_en','Humanities (History, Finance, etc.) Professional Reasoning_en', 'Science and Engineering Professional Reasoning_en',],
'coding':['总分','中文总分','英文总分',]}
MAP = {'instruct':['总分','中文总分','英文总分',]}
class CompassBenchSummarizer:
"""Do the subjectivity analyze based on evaluation results.
Args:
config (ConfigDict): The configuration object of the evaluation task.
It's expected to be filled out at runtime.
"""
def __init__(self, config: ConfigDict, check_pos_bias=False) -> None:
self.tasks = []
self.cfg = config
self.base_models = self.cfg['datasets'][0]['base_models']
self.compare_models = self.cfg['eval']['partitioner']['models']
self.judge_models = self.cfg.get('judge_models', None)
self.meta_judge_model = self.cfg.eval.partitioner.get('meta_judge_model', None)
self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_models'][0])
self.judge_function = post_process_wildbench_pair
self.check_pos_bias = check_pos_bias
def get_score(self, time_str):
output_dir, results_folder = get_outdir(self.cfg, time_str)
model_combinations = list(product(self.base_models, self.compare_models))
unique_combinations = remove_duplicate_pairs([combo for combo in model_combinations if combo[0] != combo[1]])
if self.meta_judge_model is not None:
self.judge_models.append(self.meta_judge_model)
scores = {}
for idx, judge_model_cfg in enumerate(self.judge_models):
judge_model = model_abbr_from_cfg(judge_model_cfg)
scores[judge_model] = {}
for dataset in self.cfg['datasets']:
dataset_abbr = dataset_abbr_from_cfg(dataset)
dataset_root, dataset_detail = dataset_abbr.split('/')[0], dataset_abbr.split('/')[1]
scores[judge_model][dataset_abbr] = {}
for model_pair in unique_combinations:
base_model = model_pair[0]['abbr']
compare_model = model_pair[1]['abbr']
if idx == len(self.judge_models):
subdir = base_model + '_' + compare_model + '_summarized-by--' + judge_model
else:
subdir = base_model + '_' + compare_model + '_judged-by--' + judge_model
subdir_path = os.path.join(results_folder, subdir)
if not os.path.isdir(subdir_path):
print(subdir_path + ' is not exist! please check!')
scores[judge_model][dataset_abbr][compare_model] = None
continue
judged_answers, references = get_judgeanswer_and_reference(dataset, subdir_path, self.judge_function)
win_base_model = defaultdict(float)
win_compare_model = defaultdict(float)
score_mapping = {'A++': 1, 'A+': 0.5, 'A=B': 0, 'B+': -0.5, 'B++': -1}
cnt = defaultdict(float)
for judged_answer, reference in zip(judged_answers, references):
if judged_answer not in score_mapping:
continue
else:
flag = 1 if reference['answer1'] == base_model else -1
score_1 = score_mapping[judged_answer]*flag
score_2 = -score_1
cnt[dataset_abbr] += 1
win_compare_model[dataset_abbr] += score_2
win_base_model[dataset_abbr] += score_1
for key, value in cnt.items():
win_base_model[key] = win_base_model[key] / value * 100
win_base_model[key] = round(win_base_model[key], 2)
win_compare_model[key] = win_compare_model[key] / value * 100
win_compare_model[key ] = round(win_compare_model[key], 2)
scores[judge_model][dataset_abbr][compare_model] = win_compare_model
return scores
def summarize(
self,
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S'),
):
"""Summarize the subjectivity analysis based on evaluation results.
Args:
time_str (str): Timestamp for file naming.
Returns:
pd.DataFrame: The summary results.
"""
scores = self.get_score(time_str)
output_dir, results_folder = get_outdir(self.cfg, time_str)
for judge_abbr, judge_scores in scores.items():
new_score = {}
for dataset_name, model_scores in judge_scores.items():
dataset_root, dataset_detail = dataset_name.split('/')[0], dataset_name.split('/')[1]
if dataset_root not in new_score:
new_score[dataset_root] = {}
if '_en_' in dataset_detail:
for model_name, cate_score in model_scores.items():
if model_name not in new_score[dataset_root]:
new_score[dataset_root][model_name] = {}
if len(cate_score) == 0:
new_score[dataset_root][model_name]['英文总分'] = None
else:
new_score[dataset_root][model_name].update(cate_score)
new_score[dataset_root][model_name]['英文总分'] = sum(cate_score.values()) / len(cate_score)
elif '_cn_' in dataset_detail or '_zh_' in dataset_detail:
for model_name, cate_score in model_scores.items():
if model_name not in new_score[dataset_root]:
new_score[dataset_root][model_name] = {}
if len(cate_score) == 0:
new_score[dataset_root][model_name]['中文总分'] = None
else:
new_score[dataset_root][model_name].update(cate_score)
new_score[dataset_root][model_name]['中文总分'] = sum(cate_score.values()) / len(cate_score)
for dataset, models in new_score.items():
for model, details in models.items():
if details['英文总分'] is not None and details['中文总分'] is not None:
average_score = (details['英文总分'] + details['中文总分']) / 2
else:
average_score = None
details['总分'] = average_score
df = pd.DataFrame()
# Iterate over the MAP and new_score to populate the DataFrame
for category, headers in MAP.items():
category_data = []
for model, scores in new_score[category].items():
row_data = [model]
for header in headers:
# Append the score if available, otherwise append None
row_data.append(scores.get(header, None))
category_data.append(row_data)
# Create a DataFrame for the category and concatenate with the main DataFrame
new_headers = [category+'_'+item for item in headers]
category_df = pd.DataFrame(category_data, columns=[category] + new_headers)
df = pd.concat([df, category_df.set_index(category)], axis=1)
df_transposed = df.T
output_filename = osp.join(output_dir, 'summarized-by--' + judge_abbr + '-' + '-report.csv')
transposed_csv_file_path = output_filename
df_transposed.to_csv(transposed_csv_file_path)
print(f'save to {output_filename}')