mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* fix pip version * fix pip version * update (#1522) Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn> * [Feature] Update Models (#1518) * Update Models * Update * Update humanevalx * Update * Update * [Feature] Dataset prompts update for ARC, BoolQ, Race (#1527) add judgerbench and reorg sub add judgerbench and reorg subeval add judgerbench and reorg subeval * add judgerbench and reorg subeval * add judgerbench and reorg subeval * add judgerbench and reorg subeval * add judgerbench and reorg subeval --------- Co-authored-by: zhulinJulia24 <145004780+zhulinJulia24@users.noreply.github.com> Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn> Co-authored-by: Songyang Zhang <tonysy@users.noreply.github.com> Co-authored-by: Linchen Xiao <xxllcc1993@gmail.com>
189 lines
9.0 KiB
Python
189 lines
9.0 KiB
Python
# flake8: noqa
|
|
# yapf: disable
|
|
import csv
|
|
import os
|
|
import os.path as osp
|
|
import re
|
|
from collections import defaultdict
|
|
from datetime import datetime
|
|
from itertools import product
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
from mmengine import ConfigDict
|
|
from tabulate import tabulate
|
|
|
|
from opencompass.partitioners.sub_naive import remove_duplicate_pairs
|
|
from opencompass.summarizers.subjective.compass_arena import (
|
|
check_position_bias, model_abbr_from_cfg_used_in_summarizer)
|
|
from opencompass.summarizers.subjective.utils import (
|
|
get_judgeanswer_and_reference, get_outdir)
|
|
from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg
|
|
|
|
|
|
def post_process_wildbench_pair(judgement: str):
|
|
pattern = r'\"choice\": \"(.*?)\"'
|
|
matched_result = re.findall(pattern, judgement)
|
|
if matched_result:
|
|
return matched_result[0]
|
|
else:
|
|
return None
|
|
|
|
MAP = {'language':['总分','中文总分','英文总分','自然语言处理_cn','创作_cn','对话_cn','NLP_en','creation_en','chat_en'],
|
|
'instruct':['总分','中文总分','英文总分',],
|
|
'reasoning':['总分','中文总分','英文总分','Common Sense Reasoning_cn','Social Reasoning_cn','Humanities (History, Finance, etc.) Professional Reasoning_cn', 'Science and Engineering Professional Reasoning_cn',
|
|
'Common Sense Reasoning_en','Social Reasoning_en','Humanities (History, Finance, etc.) Professional Reasoning_en', 'Science and Engineering Professional Reasoning_en',],
|
|
'coding':['总分','中文总分','英文总分',]}
|
|
|
|
MAP = {'instruct':['总分','中文总分','英文总分',]}
|
|
|
|
|
|
class CompassBenchSummarizer:
|
|
"""Do the subjectivity analyze based on evaluation results.
|
|
|
|
Args:
|
|
config (ConfigDict): The configuration object of the evaluation task.
|
|
It's expected to be filled out at runtime.
|
|
"""
|
|
|
|
def __init__(self, config: ConfigDict, check_pos_bias=False) -> None:
|
|
self.tasks = []
|
|
self.cfg = config
|
|
self.base_models = self.cfg['datasets'][0]['base_models']
|
|
self.compare_models = self.cfg['eval']['partitioner']['models']
|
|
self.judge_models = self.cfg.get('judge_models', None)
|
|
self.meta_judge_model = self.cfg.eval.partitioner.get('meta_judge_model', None)
|
|
self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_models'][0])
|
|
self.judge_function = post_process_wildbench_pair
|
|
self.check_pos_bias = check_pos_bias
|
|
|
|
def get_score(self, time_str):
|
|
output_dir, results_folder = get_outdir(self.cfg, time_str)
|
|
model_combinations = list(product(self.base_models, self.compare_models))
|
|
unique_combinations = remove_duplicate_pairs([combo for combo in model_combinations if combo[0] != combo[1]])
|
|
|
|
if self.meta_judge_model is not None:
|
|
self.judge_models.append(self.meta_judge_model)
|
|
|
|
scores = {}
|
|
for idx, judge_model_cfg in enumerate(self.judge_models):
|
|
judge_model = model_abbr_from_cfg(judge_model_cfg)
|
|
scores[judge_model] = {}
|
|
for dataset in self.cfg['datasets']:
|
|
dataset_abbr = dataset_abbr_from_cfg(dataset)
|
|
dataset_root, dataset_detail = dataset_abbr.split('/')[0], dataset_abbr.split('/')[1]
|
|
scores[judge_model][dataset_abbr] = {}
|
|
for model_pair in unique_combinations:
|
|
base_model = model_pair[0]['abbr']
|
|
compare_model = model_pair[1]['abbr']
|
|
if idx == len(self.judge_models):
|
|
subdir = base_model + '_' + compare_model + '_summarized-by--' + judge_model
|
|
else:
|
|
subdir = base_model + '_' + compare_model + '_judged-by--' + judge_model
|
|
subdir_path = os.path.join(results_folder, subdir)
|
|
if not os.path.isdir(subdir_path):
|
|
print(subdir_path + ' is not exist! please check!')
|
|
scores[judge_model][dataset_abbr][compare_model] = None
|
|
continue
|
|
|
|
judged_answers, references = get_judgeanswer_and_reference(dataset, subdir_path, self.judge_function)
|
|
win_base_model = defaultdict(float)
|
|
win_compare_model = defaultdict(float)
|
|
score_mapping = {'A++': 1, 'A+': 0.5, 'A=B': 0, 'B+': -0.5, 'B++': -1}
|
|
cnt = defaultdict(float)
|
|
|
|
for judged_answer, reference in zip(judged_answers, references):
|
|
if judged_answer not in score_mapping:
|
|
continue
|
|
else:
|
|
flag = 1 if reference['answer1'] == base_model else -1
|
|
score_1 = score_mapping[judged_answer]*flag
|
|
score_2 = -score_1
|
|
|
|
cnt[dataset_abbr] += 1
|
|
win_compare_model[dataset_abbr] += score_2
|
|
win_base_model[dataset_abbr] += score_1
|
|
|
|
for key, value in cnt.items():
|
|
win_base_model[key] = win_base_model[key] / value * 100
|
|
win_base_model[key] = round(win_base_model[key], 2)
|
|
win_compare_model[key] = win_compare_model[key] / value * 100
|
|
win_compare_model[key ] = round(win_compare_model[key], 2)
|
|
|
|
scores[judge_model][dataset_abbr][compare_model] = win_compare_model
|
|
|
|
return scores
|
|
|
|
def summarize(
|
|
self,
|
|
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S'),
|
|
):
|
|
"""Summarize the subjectivity analysis based on evaluation results.
|
|
|
|
Args:
|
|
time_str (str): Timestamp for file naming.
|
|
|
|
Returns:
|
|
pd.DataFrame: The summary results.
|
|
"""
|
|
scores = self.get_score(time_str)
|
|
output_dir, results_folder = get_outdir(self.cfg, time_str)
|
|
for judge_abbr, judge_scores in scores.items():
|
|
new_score = {}
|
|
for dataset_name, model_scores in judge_scores.items():
|
|
dataset_root, dataset_detail = dataset_name.split('/')[0], dataset_name.split('/')[1]
|
|
if dataset_root not in new_score:
|
|
new_score[dataset_root] = {}
|
|
if '_en_' in dataset_detail:
|
|
for model_name, cate_score in model_scores.items():
|
|
if model_name not in new_score[dataset_root]:
|
|
new_score[dataset_root][model_name] = {}
|
|
if len(cate_score) == 0:
|
|
new_score[dataset_root][model_name]['英文总分'] = None
|
|
else:
|
|
new_score[dataset_root][model_name].update(cate_score)
|
|
new_score[dataset_root][model_name]['英文总分'] = sum(cate_score.values()) / len(cate_score)
|
|
elif '_cn_' in dataset_detail or '_zh_' in dataset_detail:
|
|
for model_name, cate_score in model_scores.items():
|
|
if model_name not in new_score[dataset_root]:
|
|
new_score[dataset_root][model_name] = {}
|
|
if len(cate_score) == 0:
|
|
new_score[dataset_root][model_name]['中文总分'] = None
|
|
else:
|
|
new_score[dataset_root][model_name].update(cate_score)
|
|
new_score[dataset_root][model_name]['中文总分'] = sum(cate_score.values()) / len(cate_score)
|
|
for dataset, models in new_score.items():
|
|
for model, details in models.items():
|
|
if details['英文总分'] is not None and details['中文总分'] is not None:
|
|
average_score = (details['英文总分'] + details['中文总分']) / 2
|
|
else:
|
|
average_score = None
|
|
details['总分'] = average_score
|
|
|
|
|
|
df = pd.DataFrame()
|
|
# Iterate over the MAP and new_score to populate the DataFrame
|
|
for category, headers in MAP.items():
|
|
category_data = []
|
|
for model, scores in new_score[category].items():
|
|
row_data = [model]
|
|
for header in headers:
|
|
# Append the score if available, otherwise append None
|
|
row_data.append(scores.get(header, None))
|
|
category_data.append(row_data)
|
|
|
|
# Create a DataFrame for the category and concatenate with the main DataFrame
|
|
new_headers = [category+'_'+item for item in headers]
|
|
category_df = pd.DataFrame(category_data, columns=[category] + new_headers)
|
|
df = pd.concat([df, category_df.set_index(category)], axis=1)
|
|
|
|
df_transposed = df.T
|
|
|
|
|
|
output_filename = osp.join(output_dir, 'summarized-by--' + judge_abbr + '-' + '-report.csv')
|
|
|
|
|
|
transposed_csv_file_path = output_filename
|
|
df_transposed.to_csv(transposed_csv_file_path)
|
|
print(f'save to {output_filename}')
|