OpenCompass/opencompass/openicl/icl_evaluator/lm_evaluator.py
bittersweet1999 fa54aa62f6
[Feature] Add Judgerbench and reorg subeval (#1593)
* fix pip version

* fix pip version

* update (#1522)

Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>

* [Feature] Update Models (#1518)

* Update Models

* Update

* Update humanevalx

* Update

* Update

* [Feature] Dataset prompts update for ARC, BoolQ, Race (#1527)

add judgerbench and reorg sub

add judgerbench and reorg subeval

add judgerbench and reorg subeval

* add judgerbench and reorg subeval

* add judgerbench and reorg subeval

* add judgerbench and reorg subeval

* add judgerbench and reorg subeval

---------

Co-authored-by: zhulinJulia24 <145004780+zhulinJulia24@users.noreply.github.com>
Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
Co-authored-by: Songyang Zhang <tonysy@users.noreply.github.com>
Co-authored-by: Linchen Xiao <xxllcc1993@gmail.com>
2024-10-15 16:36:05 +08:00

244 lines
11 KiB
Python

# flake8: noqa: E501
# yapf: disable
import os.path as osp
import random
import re
from typing import Dict, List, Optional
import mmengine
from datasets import Dataset
from mmengine.config import ConfigDict
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.registry import DICT_POSTPROCESSORS, ICL_PROMPT_TEMPLATES
from opencompass.utils import build_dataset_from_cfg, build_model_from_cfg
from opencompass.utils.logging import get_logger
def extract_dicts(data):
max_round_num = max(len(sublist) for sublist in data)
predictions = [[] for _ in range(max_round_num)]
for sublist in data:
for i, d in enumerate(sublist):
predictions[i].append(d.get('assistant'))
for j in range(i + 1, max_round_num):
predictions[j].append(None)
return predictions
def order_preds_and_record_references(predictions, references, infer_order, seed=666):
"""Order predictions based on args and recording regrading references.
Args:
predictions (List): List of multi model predictions.
references (List): List of reference based on each problem.
infer_order (str, optional): The mode of inference order.
seed (int, optional): Random seed.
"""
random.seed(seed)
list_of_preds = [[] for _ in range(len(predictions))]
for i in range(len(predictions[0]['model_preds'])):
preds = [[pred['model_preds'][i], pred['model_name']] for pred in predictions]
if infer_order == 'random':
random.shuffle(preds)
for j in range(len(preds)):
list_of_preds[j].append(preds[j][0])
references[i][f'answer{j+1}'] = preds[j][1]
if infer_order == 'double':
assert len(predictions) == 2
list_of_preds = [a + b for a, b in zip(list_of_preds, reversed(list_of_preds))]
reversed_references = []
for item in references:
reversed_item = item.copy()
reversed_item['answer1'], reversed_item['answer2'] = reversed_item['answer2'], reversed_item['answer1']
reversed_references.append(reversed_item)
references += reversed_references
return list_of_preds, references
def count_chinese_characters(text):
words = re.findall(r'[\u4e00-\u9fff]', text)
return len(words)
def count_english_words(text):
words = re.findall(r'\b[a-zA-Z]+\b', text)
return len(words)
class LMEvaluator:
"""Evaluate output with language model.
Args:
prompt_template (ConfigDict): Prompt template configuration. Used to
prompt the language model for scores. User can use two reserved
keywords, ``{prediction}`` and ``{reference}``, referring to
the prediction and optionally the reference answer.
judge_cfg (ConfigDict): The config of language model as a judge.
meta_review_prompt_template (ConfigDict, optional): Prompt template for meta judge model.
output_path (str): The path to prediction output.
dataset_cfg (ConfigDict, optional): The config of the dataset to be
evaluated.
pack_all_predictions (bool, optional): For multiround evaluation, judge all round or judge every single round.
pred_postprocessor (ConfigDict): The model prediction's postprocessor
config.
"""
def __init__(
self,
prompt_template: ConfigDict,
judge_cfg: ConfigDict,
output_path: str,
meta_review_prompt_template: Optional[ConfigDict] = None,
pack_all_predictions: Optional[bool] = False,
dataset_cfg: Optional[ConfigDict] = None,
pred_postprocessor: Optional[ConfigDict] = None,
dict_postprocessor: Optional[ConfigDict] = None,
) -> None:
self.output_path = output_path
out_dir, out_name = osp.split(output_path)
if not out_dir:
out_dir = './'
self.prompt_tmpl = ICL_PROMPT_TEMPLATES.build(prompt_template)
if meta_review_prompt_template is not None:
self.meta_review_prompt_tmpl = ICL_PROMPT_TEMPLATES.build(meta_review_prompt_template)
max_out_len = judge_cfg.get('max_out_len', None)
batch_size = judge_cfg.get('batch_size', None)
model = build_model_from_cfg(model_cfg=judge_cfg)
self.inferencer = GenInferencer(model,
max_out_len=max_out_len,
batch_size=batch_size,
output_json_filepath=out_dir,
output_json_filename=out_name)
self.logger = get_logger()
self.dataset_cfg = dataset_cfg
self.pack_all_predictions = pack_all_predictions
self.pred_postprocessor = pred_postprocessor
self.dict_postprocessor = dict_postprocessor
def score(self,
predictions,
judgements: Optional[List] = None,
references: Optional[List] = None,
meta: Optional[bool] = False,
infer_order: Optional[str] = 'random') -> Dict:
dup_indices = []
if isinstance(predictions, list):
"""Apply to multi-model comparison."""
if references is None:
references = [{} for _ in range(len(predictions[0]['model_preds']))]
predictions, references = order_preds_and_record_references(predictions, references, infer_order)
# calculate dupicated predictions numbers
total_predictions_num = len(predictions[0])
# since there is impossible that two models response same pattern in multi-round chat, so we just check dup for single chat
if isinstance(predictions[0][0], str):
for i in range(len(predictions[0])):
check = [sub[i] for sub in predictions]
if len(set(check)) == 1:
dup_indices.append(i)
elif isinstance(predictions, dict):
"""Apply to single-model scoring."""
if references is None:
references = [{} for _ in range(len(predictions[0]['model_preds']))]
predictions = [predictions['model_preds']]
# Due to the rarity of identical predictions, we have temporarily disabled the plagiarism detection feature.
dup_indices = []
if len(dup_indices) != 0:
# remove dupicated predictions
for index in sorted(dup_indices, reverse=True):
for sublist in predictions:
del sublist[index]
del references[index]
pred_dict = {}
if isinstance(predictions[0][0], str):
# single chat for format like [['xxx', 'xxxx'], ['xxx', 'xxxx']]
for i in range(len(predictions)):
key = 'prediction' if i == 0 else f'prediction{i + 1}'
gold_key = 'obj_gold'
pred_dict[key] = predictions[i]
pred_dict[gold_key] = references
pred_dict[key + '_en_word_count'] = [count_english_words(j) for j in predictions[i]]
pred_dict[key + '_cn_word_count'] = [count_chinese_characters(j) for j in predictions[i]]
if judgements:
for i in range(len(judgements)):
key = 'judgement' if i == 0 else f'judgement{i + 1}'
pred_dict[key] = judgements[i]['model_preds']
for j in range(len(references)):
references[j]['judge_model' + str(i + 1)] = judgements[i]['model_name']
elif isinstance(predictions[0][0], list):
# multi round for format like [[[{'round':1, 'user':'', 'assistant':''}, {'round':2, 'user':'', 'assistant':''}], [{'round':1, 'user':'', 'assistant':''}, {'round':2, 'user':'', 'assistant':''}]]]
if self.pack_all_predictions:
for i in range(len(predictions)):
key = 'prediction' if i == 0 else f'prediction{i + 1}'
pred_dict[key] = predictions[i]
else:
for i in range(len(predictions)):
multiround_predictions = extract_dicts(predictions[i])
for j in range(len(multiround_predictions)):
key = 'prediction' if i == 0 else f'prediction{i}'
key += '_r' + str(j + 1)
pred_dict[key] = multiround_predictions[j]
if judgements:
raise NotImplementedError(
'Not applied meta-reivew judge on multi-round dataset')
else:
raise NotImplementedError(f'{predictions[0][0]} with type {type(predictions[0][0])}, please check the postprocess you add to the prediction string is right or not, we suggest to return an empty string but not None')
if self.dataset_cfg:
dataset = build_dataset_from_cfg(self.dataset_cfg)
if infer_order == 'double':
new_ds = {k: dataset.test[k] * 2 for k in dataset.test.column_names}
dataset.reader.dataset['test'] = Dataset.from_dict(new_ds)
if len(dup_indices) != 0:
remaining_indices = [idx for idx in range(len(dataset.test)) if idx not in dup_indices]
dataset.reader.dataset['test'] = dataset.test.select(remaining_indices)
print(f'Among total {total_predictions_num} predictions, there are {len(dup_indices)} predictions totally same, which are removed!')
for k, v in pred_dict.items():
dataset.reader.dataset['test'] = dataset.test.add_column(k, v)
dataset.reader.input_columns.append(k)
if references:
dataset.reader.input_columns.append('reference')
dataset.reader.dataset['test'] = dataset.test.add_column('reference', references)
else:
# build a default dataset just for comparison
from opencompass.datasets.lmeval import LMEvalDataset
input_columns = list(pred_dict.keys())
if references:
input_columns.append('reference')
dataset = LMEvalDataset(
reader_cfg=dict(input_columns=input_columns, output_column=None, train_split='test'),
reference=references,
**pred_dict
)
dataset.reader.output_column = 'reference'
retriever = ZeroRetriever(dataset)
if meta:
self.inferencer.inference(retriever=retriever, prompt_template=self.meta_review_prompt_tmpl)
else:
self.inferencer.inference(retriever=retriever, prompt_template=self.prompt_tmpl)
output = mmengine.load(self.output_path)
return self.postprocess(output)
def postprocess(self, output: Dict) -> Dict:
"""Postprocess output by adding necessary statistics or data into
it."""
if self.dict_postprocessor is None:
return output
else:
kwargs = self.dict_postprocessor
proc = DICT_POSTPROCESSORS.get(kwargs.pop('type'))
return proc(output, self.output_path, **kwargs)