mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* add ceval, gsm8k modelscope surpport * update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest * update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets * format file * format file * update dataset format * support ms_dataset * udpate dataset for modelscope support * merge myl_dev and update test_ms_dataset * udpate dataset for modelscope support * update readme * update eval_api_zhipu_v2 * remove unused code * add get_data_path function * update readme * remove tydiqa japanese subset * add ceval, gsm8k modelscope surpport * update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest * update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets * format file * format file * update dataset format * support ms_dataset * udpate dataset for modelscope support * merge myl_dev and update test_ms_dataset * update readme * udpate dataset for modelscope support * update eval_api_zhipu_v2 * remove unused code * add get_data_path function * remove tydiqa japanese subset * update util * remove .DS_Store * fix md format * move util into package * update docs/get_started.md * restore eval_api_zhipu_v2.py, add environment setting * Update dataset * Update * Update * Update * Update --------- Co-authored-by: Yun lin <yunlin@U-Q9X2K4QV-1904.local> Co-authored-by: Yunnglin <mao.looper@qq.com> Co-authored-by: Yun lin <yunlin@laptop.local> Co-authored-by: Yunnglin <maoyl@smail.nju.edu.cn> Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
179 lines
6.7 KiB
Python
179 lines
6.7 KiB
Python
import json
|
|
import os
|
|
from os import environ
|
|
|
|
from datasets import Dataset, DatasetDict
|
|
|
|
from opencompass.registry import LOAD_DATASET
|
|
from opencompass.utils import get_data_path
|
|
|
|
from .base import BaseDataset
|
|
|
|
|
|
@LOAD_DATASET.register_module()
|
|
class PIQADataset(BaseDataset):
|
|
|
|
@staticmethod
|
|
def load_single(path, data_filename, label_filename):
|
|
data_path = os.path.join(path, data_filename)
|
|
label_path = os.path.join(path, label_filename)
|
|
dataset = []
|
|
with open(data_path, 'r', encoding='utf-8') as f:
|
|
data_lines = f.readlines()
|
|
with open(label_path, 'r', encoding='utf-8') as f:
|
|
label_lines = f.readlines()
|
|
assert len(data_lines) == len(label_lines)
|
|
for data, label in zip(data_lines, label_lines):
|
|
i = json.loads(data.strip())
|
|
i['label'] = int(label.strip())
|
|
del i['id']
|
|
dataset.append(i)
|
|
|
|
return Dataset.from_list(dataset)
|
|
|
|
@staticmethod
|
|
def load(path):
|
|
path = get_data_path(path)
|
|
if environ.get('DATASET_SOURCE') == 'ModelScope':
|
|
from modelscope import MsDataset
|
|
ms_dataset = MsDataset.load(path)
|
|
dataset = DatasetDict({
|
|
'train': ms_dataset['train'],
|
|
'validation': ms_dataset['validation']
|
|
})
|
|
else:
|
|
train_dataset = PIQADataset.load_single(path, 'train.jsonl',
|
|
'train-labels.lst')
|
|
val_dataset = PIQADataset.load_single(path, 'dev.jsonl',
|
|
'dev-labels.lst')
|
|
dataset = DatasetDict({
|
|
'train': train_dataset,
|
|
'validation': val_dataset
|
|
})
|
|
return dataset
|
|
|
|
|
|
@LOAD_DATASET.register_module()
|
|
class PIQADatasetV2(BaseDataset):
|
|
|
|
@staticmethod
|
|
def load_single(path, data_filename, label_filename):
|
|
data_path = os.path.join(path, data_filename)
|
|
label_path = os.path.join(path, label_filename)
|
|
dataset = []
|
|
with open(data_path, 'r', encoding='utf-8') as f:
|
|
data_lines = f.readlines()
|
|
with open(label_path, 'r', encoding='utf-8') as f:
|
|
label_lines = f.readlines()
|
|
assert len(data_lines) == len(label_lines)
|
|
for data, label in zip(data_lines, label_lines):
|
|
i = json.loads(data.strip())
|
|
label = int(label.strip())
|
|
if label < 0:
|
|
i['answer'] = 'NULL'
|
|
else:
|
|
i['answer'] = 'AB'[label]
|
|
del i['id']
|
|
dataset.append(i)
|
|
|
|
return Dataset.from_list(dataset)
|
|
|
|
@staticmethod
|
|
def load(path):
|
|
path = get_data_path(path)
|
|
if environ.get('DATASET_SOURCE') == 'ModelScope':
|
|
from modelscope import MsDataset
|
|
dataset = DatasetDict()
|
|
for split in ['train', 'validation']:
|
|
ms_dataset = MsDataset.load(path, split=split)
|
|
dataset_list = []
|
|
for item in ms_dataset:
|
|
label = item['label']
|
|
dataset_list.append({
|
|
'goal':
|
|
item['goal'],
|
|
'sol1':
|
|
item['sol1'],
|
|
'sol2':
|
|
item['sol2'],
|
|
'answer':
|
|
'NULL' if label < 0 else 'AB'[label]
|
|
})
|
|
dataset[split] = Dataset.from_list(dataset_list)
|
|
else:
|
|
train_dataset = PIQADatasetV2.load_single(path, 'train.jsonl',
|
|
'train-labels.lst')
|
|
val_dataset = PIQADatasetV2.load_single(path, 'dev.jsonl',
|
|
'dev-labels.lst')
|
|
dataset = DatasetDict({
|
|
'train': train_dataset,
|
|
'validation': val_dataset
|
|
})
|
|
return dataset
|
|
|
|
|
|
@LOAD_DATASET.register_module()
|
|
class PIQADatasetV3(BaseDataset):
|
|
|
|
@staticmethod
|
|
def load_single(path, data_filename, label_filename):
|
|
data_path = os.path.join(path, data_filename)
|
|
label_path = os.path.join(path, label_filename)
|
|
dataset = []
|
|
with open(data_path, 'r', encoding='utf-8') as f:
|
|
data_lines = f.readlines()
|
|
with open(label_path, 'r', encoding='utf-8') as f:
|
|
label_lines = f.readlines()
|
|
assert len(data_lines) == len(label_lines)
|
|
for data, label in zip(data_lines, label_lines):
|
|
i = json.loads(data.strip())
|
|
i['label'] = int(label.strip())
|
|
# some preprocessing
|
|
i['goal'] = i['goal'][0].upper() + i['goal'][1:]
|
|
if i['goal'].endswith('?') or i['goal'].endswith('.'):
|
|
i['sol1'] = i['sol1'][0].upper() + i['sol1'][1:]
|
|
i['sol2'] = i['sol2'][0].upper() + i['sol2'][1:]
|
|
else:
|
|
i['sol1'] = i['sol1'][0].lower() + i['sol1'][1:]
|
|
i['sol2'] = i['sol2'][0].lower() + i['sol2'][1:]
|
|
del i['id']
|
|
dataset.append(i)
|
|
|
|
return Dataset.from_list(dataset)
|
|
|
|
@staticmethod
|
|
def load(path):
|
|
path = get_data_path(path)
|
|
if environ.get('DATASET_SOURCE') == 'ModelScope':
|
|
from modelscope import MsDataset
|
|
dataset = DatasetDict()
|
|
for split in ['train', 'validation']:
|
|
ms_dataset = MsDataset.load(path, split=split)
|
|
dataset_list = []
|
|
for item in ms_dataset:
|
|
label = item['label']
|
|
goal = item['goal'][0].upper() + item['goal'][1:]
|
|
if goal.endswith('?') or goal.endswith('.'):
|
|
sol1 = item['sol1'][0].upper() + item['sol1'][1:]
|
|
sol2 = item['sol2'][0].upper() + item['sol2'][1:]
|
|
else:
|
|
sol1 = item['sol1'][0].lower() + item['sol1'][1:]
|
|
sol2 = item['sol2'][0].lower() + item['sol2'][1:]
|
|
dataset_list.append({
|
|
'goal': goal,
|
|
'sol1': sol1,
|
|
'sol2': sol2,
|
|
'label': label
|
|
})
|
|
dataset[split] = Dataset.from_list(dataset_list)
|
|
else:
|
|
train_dataset = PIQADatasetV3.load_single(path, 'train.jsonl',
|
|
'train-labels.lst')
|
|
val_dataset = PIQADatasetV3.load_single(path, 'dev.jsonl',
|
|
'dev-labels.lst')
|
|
dataset = DatasetDict({
|
|
'train': train_dataset,
|
|
'validation': val_dataset
|
|
})
|
|
return dataset
|