mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
125 lines
3.7 KiB
Python
125 lines
3.7 KiB
Python
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
from opencompass.openicl.icl_retriever import FixKRetriever
|
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
from opencompass.openicl.icl_evaluator import AccEvaluator
|
|
from opencompass.datasets import MMLUDataset
|
|
from opencompass.utils.text_postprocessors import general_post_capital_postprocess
|
|
|
|
# None of the mmlu dataset in huggingface is correctly parsed, so we use our own dataset reader
|
|
# Please download the dataset from https://people.eecs.berkeley.edu/~hendrycks/data.tar
|
|
|
|
mmlu_reader_cfg = dict(
|
|
input_columns=["input", "A", "B", "C", "D"],
|
|
output_column="target",
|
|
train_split='dev')
|
|
|
|
mmlu_all_sets = [
|
|
"college_biology",
|
|
"college_chemistry",
|
|
"college_computer_science",
|
|
"college_mathematics",
|
|
"college_physics",
|
|
"electrical_engineering",
|
|
"astronomy",
|
|
"anatomy",
|
|
"abstract_algebra",
|
|
"machine_learning",
|
|
"clinical_knowledge",
|
|
"global_facts",
|
|
"management",
|
|
"nutrition",
|
|
"marketing",
|
|
"professional_accounting",
|
|
"high_school_geography",
|
|
"international_law",
|
|
"moral_scenarios",
|
|
"computer_security",
|
|
"high_school_microeconomics",
|
|
"professional_law",
|
|
"medical_genetics",
|
|
"professional_psychology",
|
|
"jurisprudence",
|
|
"world_religions",
|
|
"philosophy",
|
|
"virology",
|
|
"high_school_chemistry",
|
|
"public_relations",
|
|
"high_school_macroeconomics",
|
|
"human_sexuality",
|
|
"elementary_mathematics",
|
|
"high_school_physics",
|
|
"high_school_computer_science",
|
|
"high_school_european_history",
|
|
"business_ethics",
|
|
"moral_disputes",
|
|
"high_school_statistics",
|
|
"miscellaneous",
|
|
"formal_logic",
|
|
"high_school_government_and_politics",
|
|
"prehistory",
|
|
"security_studies",
|
|
"high_school_biology",
|
|
"logical_fallacies",
|
|
"high_school_world_history",
|
|
"professional_medicine",
|
|
"high_school_mathematics",
|
|
"college_medicine",
|
|
"high_school_us_history",
|
|
"sociology",
|
|
"econometrics",
|
|
"high_school_psychology",
|
|
"human_aging",
|
|
"us_foreign_policy",
|
|
"conceptual_physics",
|
|
]
|
|
|
|
mmlu_datasets = []
|
|
for _name in mmlu_all_sets:
|
|
_hint = f'There is a single choice question about {_name.replace("_", " ")}. Answer the question by replying A, B, C or D.'
|
|
mmlu_infer_cfg = dict(
|
|
ice_template=dict(
|
|
type=PromptTemplate,
|
|
template=dict(round=[
|
|
dict(
|
|
role="HUMAN",
|
|
prompt=
|
|
f"{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: "
|
|
),
|
|
dict(role="BOT", prompt="{target}\n")
|
|
]),
|
|
),
|
|
prompt_template=dict(
|
|
type=PromptTemplate,
|
|
template=dict(
|
|
begin="</E>",
|
|
round=[
|
|
dict(
|
|
role="HUMAN",
|
|
prompt=
|
|
f"{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: "
|
|
),
|
|
],
|
|
),
|
|
ice_token="</E>",
|
|
),
|
|
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
|
|
inferencer=dict(type=GenInferencer),
|
|
)
|
|
|
|
mmlu_eval_cfg = dict(
|
|
evaluator=dict(type=AccEvaluator),
|
|
pred_postprocessor=dict(type=general_post_capital_postprocess))
|
|
|
|
mmlu_datasets.append(
|
|
dict(
|
|
abbr=f"lukaemon_mmlu_{_name}",
|
|
type=MMLUDataset,
|
|
path="./data/mmlu/",
|
|
name=_name,
|
|
reader_cfg=mmlu_reader_cfg,
|
|
infer_cfg=mmlu_infer_cfg,
|
|
eval_cfg=mmlu_eval_cfg,
|
|
))
|
|
|
|
del _name, _hint
|