mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* refine gitignore * [Feature]: Add minigpt-4 * [Feature]: Add mm local runner * [Feature]: Add instructblip * add otter and llama-adapter * add owl * add llama2-adapter and owl * lint * [Feature]: Add minigpt-4 * [Feature]: Add instructblip * add otter and llama-adapter * add owl * add llama2-adapter and owl * lint * lint * update * lint * lint * add __init__.py * update * update * update --------- Co-authored-by: liuyuan <3463423099@qq.com>
307 lines
11 KiB
Python
307 lines
11 KiB
Python
import json
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import clip
|
|
import mmengine
|
|
import torch
|
|
import torch.nn as nn
|
|
from llama_adapter_v2_multimodal7b.llama.llama import ModelArgs, Transformer
|
|
from llama_adapter_v2_multimodal7b.llama.tokenizer import Tokenizer
|
|
from llama_adapter_v2_multimodal7b.llama.utils import sample_top_p
|
|
from mmengine.device import get_device
|
|
from timm.models.vision_transformer import Block
|
|
|
|
from opencompass.registry import MM_MODELS
|
|
|
|
|
|
class LLaMA_adapter(nn.Module):
|
|
|
|
def __init__(self,
|
|
llama_ckpt_dir,
|
|
llama_tokenizer,
|
|
max_seq_len=512,
|
|
max_batch_size=1,
|
|
clip_model='ViT-L/14',
|
|
v_embed_dim=768,
|
|
v_depth=8,
|
|
v_num_heads=16,
|
|
v_mlp_ratio=4.0,
|
|
query_len=10,
|
|
query_layer=31,
|
|
w_bias=False,
|
|
w_lora=False,
|
|
lora_rank=16,
|
|
prompt_constructor=None,
|
|
post_processor=None):
|
|
super().__init__()
|
|
|
|
self.device = get_device()
|
|
# load llama configs
|
|
with open(os.path.join(llama_ckpt_dir, 'params.json'), 'r') as f:
|
|
params = json.loads(f.read())
|
|
model_args = ModelArgs(max_seq_len=max_seq_len,
|
|
max_batch_size=max_batch_size,
|
|
**params)
|
|
|
|
# 1. clip and clip projector
|
|
self.clip, self.clip_transform = clip.load(clip_model)
|
|
|
|
clip_dim = self.clip.visual.proj.shape[1]
|
|
self.clip_proj = nn.Linear(clip_dim, v_embed_dim)
|
|
self.clip_proj_norm = nn.LayerNorm(v_embed_dim)
|
|
|
|
self.query_len = query_len
|
|
self.query_layer = query_layer
|
|
|
|
# 2. visual query, blocks and projector
|
|
self.visual_query = nn.Embedding(query_len, v_embed_dim)
|
|
self.visual_blocks = nn.ModuleList([
|
|
Block(v_embed_dim, v_num_heads, v_mlp_ratio, qkv_bias=True)
|
|
for _ in range(v_depth)
|
|
])
|
|
self.visual_proj = nn.Linear(v_embed_dim, model_args.dim)
|
|
self.visual_proj_norm = nn.LayerNorm(model_args.dim)
|
|
|
|
# 3. adapter query
|
|
self.adapter_query = nn.Embedding(query_len * query_layer,
|
|
model_args.dim)
|
|
|
|
# 4. tokenizer
|
|
self.tokenizer = Tokenizer(model_path=llama_tokenizer)
|
|
|
|
# 5. llama
|
|
model_args.vocab_size = self.tokenizer.n_words
|
|
model_args.w_bias = w_bias
|
|
model_args.w_lora = w_lora
|
|
model_args.lora_rank = lora_rank
|
|
torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
|
self.llama = Transformer(model_args)
|
|
torch.set_default_tensor_type(torch.FloatTensor)
|
|
|
|
ckpts = sorted(Path(llama_ckpt_dir).glob('*.pth'))
|
|
for ckpt in ckpts:
|
|
ckpt = torch.load(ckpt, map_location='cpu')
|
|
self.llama.load_state_dict(ckpt, strict=False)
|
|
|
|
self.prompt_constructor = mmengine.registry.build_from_cfg(
|
|
prompt_constructor, MM_MODELS)
|
|
if post_processor is not None:
|
|
self.post_processor = mmengine.registry.build_from_cfg(
|
|
post_processor, MM_MODELS)
|
|
|
|
def clip_encode_image(self, x):
|
|
# modified from CLIP
|
|
x = self.clip.visual.conv1(x) # shape = [*, width, grid, grid]
|
|
# shape = [*, width, grid ** 2]
|
|
x = x.reshape(x.shape[0], x.shape[1], -1)
|
|
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
|
x = torch.cat([
|
|
self.clip.visual.class_embedding.to(x.dtype) + torch.zeros(
|
|
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x
|
|
],
|
|
dim=1) # shape = [*, grid ** 2 + 1, width]
|
|
x = x + self.clip.visual.positional_embedding.to(x.dtype)
|
|
x = self.clip.visual.ln_pre(x)
|
|
|
|
x = x.permute(1, 0, 2) # NLD -> LND
|
|
x = self.clip.visual.transformer(x)
|
|
x = x.permute(1, 0, 2) # LND -> NLD
|
|
|
|
# preserve all spatial tokens
|
|
x = self.clip.visual.ln_post(x[:, :, :])
|
|
|
|
if self.clip.visual.proj is not None:
|
|
x = x @ self.clip.visual.proj
|
|
|
|
return x
|
|
|
|
def forward_visual(self, imgs):
|
|
clip_feats = self.clip_encode_image(imgs)
|
|
clip_feats = self.clip_proj_norm(self.clip_proj(clip_feats.float()))
|
|
|
|
visual_query = self.visual_query.weight.unsqueeze(0).repeat(
|
|
len(imgs), 1, 1)
|
|
visual_query = torch.cat([visual_query, clip_feats], dim=1)
|
|
for block in self.visual_blocks:
|
|
visual_query = block(visual_query)
|
|
|
|
visual_query = visual_query[:, :self.query_len, :]
|
|
visual_query = self.visual_proj(visual_query)
|
|
visual_query = self.visual_proj_norm(visual_query)
|
|
|
|
return visual_query
|
|
|
|
@torch.inference_mode()
|
|
def forward(self, visual_query, tokens, start_pos: int):
|
|
_bsz, seqlen = tokens.shape
|
|
h = self.llama.tok_embeddings(tokens)
|
|
freqs_cis = self.llama.freqs_cis.to(h.device)
|
|
freqs_cis = freqs_cis[start_pos:start_pos + seqlen]
|
|
mask = None
|
|
mask = torch.full((1, 1, seqlen, seqlen),
|
|
float('-inf'),
|
|
device=h.device)
|
|
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
|
|
|
|
for layer in self.llama.layers[:-1 * self.query_layer]:
|
|
h = layer(h, start_pos, freqs_cis, mask)
|
|
|
|
adapter = self.adapter_query.weight.reshape(self.query_layer,
|
|
self.query_len,
|
|
-1).unsqueeze(1)
|
|
adapter_index = 0
|
|
for layer in self.llama.layers[-1 * self.query_layer:]:
|
|
dynamic_adapter = adapter[adapter_index].repeat(_bsz, 1, 1)
|
|
dynamic_adapter = dynamic_adapter + visual_query
|
|
h = layer(h, start_pos, freqs_cis, mask, dynamic_adapter)
|
|
adapter_index = adapter_index + 1
|
|
|
|
h = self.llama.norm(h)
|
|
output = self.llama.output(h[:, -1, :])
|
|
|
|
return output.float()
|
|
|
|
def pack_inputs(self, batch):
|
|
images = [image.unsqueeze(0) for image in batch['inputs']]
|
|
data_samples = [data_sample for data_sample in batch['data_samples']]
|
|
images = torch.cat(images, dim=0).to(get_device())
|
|
inputs = {'image': images, 'data_samples': data_samples}
|
|
return inputs
|
|
|
|
@torch.inference_mode()
|
|
def generate(self, batch):
|
|
max_gen_len = 256
|
|
temperature = 0.1
|
|
top_p = 0.75
|
|
inputs = self.pack_inputs(batch)
|
|
inputs = self.prompt_constructor(inputs)
|
|
image = inputs['image']
|
|
prompts = inputs['prompt']
|
|
data_samples = inputs['data_samples']
|
|
|
|
data_sample = data_samples[0]
|
|
|
|
prompts = [prompts]
|
|
imgs = image
|
|
|
|
# import pdb;pdb.set_trace()
|
|
bsz = len(imgs)
|
|
params = self.llama.params
|
|
|
|
with torch.cuda.amp.autocast():
|
|
visual_query = self.forward_visual(imgs)
|
|
|
|
# import pdb;pdb.set_trace()
|
|
if isinstance(prompts[0], str):
|
|
prompts = [
|
|
self.tokenizer.encode(x, bos=True, eos=False) for x in prompts
|
|
]
|
|
|
|
# import pdb;pdb.set_trace()
|
|
min_prompt_size = min([len(t) for t in prompts])
|
|
max_prompt_size = max([len(t) for t in prompts])
|
|
|
|
total_len = min(params.max_seq_len, max_gen_len + max_prompt_size)
|
|
|
|
tokens = torch.full((bsz, total_len),
|
|
self.tokenizer.pad_id).cuda().long()
|
|
|
|
# import pdb;pdb.set_trace()
|
|
for k, t in enumerate(prompts):
|
|
if len(t) <= total_len:
|
|
tokens[k, :len(t)] = torch.tensor(t).cuda().long()
|
|
else:
|
|
tokens[k, :total_len] = torch.tensor(
|
|
t[:total_len]).cuda().long()
|
|
|
|
input_text_mask = tokens != self.tokenizer.pad_id
|
|
start_pos = min_prompt_size
|
|
prev_pos = 0
|
|
for cur_pos in range(start_pos, total_len):
|
|
with torch.cuda.amp.autocast():
|
|
logits = self.forward(visual_query,
|
|
tokens[:, prev_pos:cur_pos], prev_pos)
|
|
if temperature > 0:
|
|
probs = torch.softmax(logits / temperature, dim=-1)
|
|
next_token = sample_top_p(probs, top_p)
|
|
else:
|
|
next_token = torch.argmax(logits, dim=-1)
|
|
next_token = next_token.reshape(-1)
|
|
|
|
next_token = torch.where(input_text_mask[:, cur_pos],
|
|
tokens[:, cur_pos], next_token)
|
|
tokens[:, cur_pos] = next_token
|
|
# trick: early stop if bsz==1
|
|
if bsz == 1 and next_token[0] == self.tokenizer.eos_id:
|
|
break
|
|
prev_pos = cur_pos
|
|
|
|
decoded = []
|
|
for i, t in enumerate(tokens.tolist()):
|
|
|
|
# cut to max gen len
|
|
t = t[len(prompts[i]):len(prompts[i]) + max_gen_len]
|
|
# cut to eos tok if any
|
|
try:
|
|
t = t[:t.index(self.tokenizer.eos_id)]
|
|
except ValueError:
|
|
pass
|
|
decoded.append(self.tokenizer.decode(t))
|
|
|
|
output_text = self.post_processor(decoded[0])
|
|
data_sample.pred_answer = output_text
|
|
return data_sample
|
|
|
|
|
|
@MM_MODELS.register_module('LLaMA-adapter-v2')
|
|
class LLaMA_adapter_v2(nn.Module):
|
|
|
|
def __init__(self,
|
|
llama_dir,
|
|
prompt_constructor: dict,
|
|
post_processor: dict,
|
|
mode: str = 'generation',
|
|
device='cuda' if torch.cuda.is_available() else 'cpu',
|
|
download_root='ckpts'):
|
|
super().__init__()
|
|
name = 'BIAS-7B'
|
|
|
|
# BIAS-7B or https://xxx/sha256_BIAS-7B.pth -> 7B
|
|
llama_type = name.split('.')[0].split('-')[-1]
|
|
llama_ckpt_dir = os.path.join(llama_dir, llama_type)
|
|
llama_tokenzier_path = os.path.join(llama_dir, 'tokenizer.model')
|
|
|
|
# load llama_adapter weights and model_cfg
|
|
print(f'Loading LLaMA-Adapter from {llama_dir}')
|
|
ckpt = torch.load(
|
|
f'{llama_dir}/7fa55208379faf2dd862565284101b0e4a2a72114d6490a95e432cf9d9b6c813_BIAS-7B.pth', # noqa: E501
|
|
map_location='cpu')
|
|
model_cfg = ckpt.get('config', {})
|
|
|
|
self.model = LLaMA_adapter(
|
|
llama_ckpt_dir,
|
|
llama_tokenzier_path,
|
|
max_seq_len=512,
|
|
max_batch_size=1,
|
|
clip_model='ViT-L/14',
|
|
v_embed_dim=768,
|
|
v_depth=8,
|
|
v_num_heads=16,
|
|
v_mlp_ratio=4.0,
|
|
query_len=10,
|
|
query_layer=31,
|
|
w_bias=model_cfg.get('w_bias', False),
|
|
w_lora=model_cfg.get('w_lora', False),
|
|
lora_rank=model_cfg.get('lora_rank', 16),
|
|
prompt_constructor=prompt_constructor,
|
|
post_processor=post_processor,
|
|
)
|
|
|
|
self.model.load_state_dict(ckpt['model'], strict=False)
|
|
self.mode = mode
|
|
|
|
def forward(self, batch):
|
|
if self.mode == 'generation':
|
|
return self.model.generate(batch)
|