mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* support internLM * support internLM * simplify intern model files * update storage_manager * support internLM * Modify the file organization structure * support internLM * support internLM * support internLM * support internLM * change some details
128 lines
4.8 KiB
Python
128 lines
4.8 KiB
Python
from typing import Dict, List, Optional
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from opencompass.models.base import BaseModel, LMTemplateParser
|
|
|
|
|
|
class InternLM(BaseModel):
|
|
|
|
def __init__(self,
|
|
path: str,
|
|
max_seq_len: int = 2048,
|
|
tokenizer_only: bool = False,
|
|
tokenizer_path: Optional[str] = None,
|
|
model_config: Optional[str] = None,
|
|
tokenizer_type: Optional[str] = 'v7',
|
|
meta_template: Optional[Dict] = None):
|
|
if tokenizer_only:
|
|
self._load_tokenizer(tokenizer_path=tokenizer_path,
|
|
tokenizer_type=tokenizer_type,
|
|
max_seq_len=max_seq_len)
|
|
else:
|
|
self._load_model(path=path,
|
|
max_seq_len=max_seq_len,
|
|
tokenizer_path=tokenizer_path,
|
|
tokenizer_type=tokenizer_type,
|
|
model_config=model_config)
|
|
self.template_parser = LMTemplateParser(meta_template)
|
|
self.eos_token_id = None
|
|
if meta_template and 'eos_token_id' in meta_template:
|
|
self.eos_token_id = meta_template['eos_token_id']
|
|
|
|
def _load_model(self,
|
|
path: str,
|
|
max_seq_len: int,
|
|
tokenizer_path: Optional[str] = None,
|
|
tokenizer_type: Optional[str] = None,
|
|
model_config: Optional[str] = None):
|
|
|
|
from internlm.load.load_model import load_llm
|
|
from internlm.model import build_model_with_cfg
|
|
|
|
self.model, self.tokenizer, self.generator, _ = load_llm(
|
|
path,
|
|
max_seq_len,
|
|
tokenizer_path=tokenizer_path,
|
|
tokenizer_type=tokenizer_type,
|
|
module=build_model_with_cfg,
|
|
model_config_path=model_config)
|
|
|
|
def _load_tokenizer(self, tokenizer_path: str, tokenizer_type: str,
|
|
max_seq_len: int):
|
|
from internlm.load.tokenizer import LLMTokenizer
|
|
from sentencepiece import SentencePieceProcessor
|
|
tokenizer = SentencePieceProcessor()
|
|
tokenizer.load(tokenizer_path)
|
|
tokenizer = LLMTokenizer(tokenizer,
|
|
max_seq_len=max_seq_len,
|
|
tokenizer_type=tokenizer_type)
|
|
self.tokenizer = tokenizer
|
|
|
|
def get_token_len(self, prompt: str) -> int:
|
|
"""Get lengths of the tokenized strings.
|
|
|
|
Args:
|
|
prompt (str): Input string.
|
|
|
|
Returns:
|
|
int: Length of the input tokens
|
|
"""
|
|
tokens = self.tokenizer([prompt], truncation=False)['tokens']
|
|
return len(tokens[0])
|
|
|
|
def generate(self, inputs: List[str], max_out_len: int) -> List[str]:
|
|
"""Generate results given a list of inputs.
|
|
|
|
Args:
|
|
inputs (List[str]): A list of strings.
|
|
max_out_len (int): The maximum length of the output.
|
|
|
|
Returns:
|
|
List[str]: A list of generated strings.
|
|
"""
|
|
return self.generator.generate(inputs,
|
|
generation_kwargs={
|
|
'max_gen_len': max_out_len,
|
|
'eos_token_id': self.eos_token_id
|
|
})
|
|
|
|
def get_ppl(self,
|
|
input_texts: List[str],
|
|
mask_length: Optional[List[int]] = None) -> List[float]:
|
|
"""Get perplexity scores given a list of inputs.
|
|
|
|
Args:
|
|
input_texts (List[str]): A list of strings.
|
|
mask_length (Optional[List[int]]): A list of mask lengths. If
|
|
provided, the perplexity scores will be calculated with the
|
|
first mask_length[i] tokens masked out.
|
|
|
|
Returns:
|
|
List[float]: A list of perplexity scores.
|
|
"""
|
|
outputs, inputs = self.generator.get_logits(input_texts)
|
|
|
|
shift_logits = outputs[..., :-1, :].contiguous()
|
|
shift_labels = inputs['tokens'][..., 1:].contiguous()
|
|
|
|
loss_fct = torch.nn.CrossEntropyLoss(
|
|
reduction='none', ignore_index=self.tokenizer.pad_token_id)
|
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
|
|
shift_labels.view(-1)).view(shift_labels.size())
|
|
|
|
if mask_length is not None:
|
|
mask = torch.zeros_like(shift_labels) # [batch,seqlen]
|
|
for i in range(len(mask)):
|
|
for j in range(mask_length[i] - 1, len(mask[i])):
|
|
mask[i][j] = 1
|
|
loss = loss * mask
|
|
|
|
lens = (inputs['tokens'] !=
|
|
self.tokenizer.pad_token_id).sum(-1).cpu().numpy()
|
|
if mask_length is not None:
|
|
lens -= np.array(mask_length)
|
|
ce_loss = loss.sum(-1).cpu().detach().numpy() / lens
|
|
return ce_loss
|