OpenCompass/docs/zh_cn/advanced_guides/evaluation_turbomind.md
Songyang Zhang 3f36db3b06
[Feature] Support turbomind (#166)
* support turbomind

* update doc

* Update docs/en/advanced_guides/evaluation_turbomind.md

Co-authored-by: Tong Gao <gaotongxiao@gmail.com>

* Update docs/zh_cn/advanced_guides/evaluation_turbomind.md

Co-authored-by: Tong Gao <gaotongxiao@gmail.com>

* Update docs/zh_cn/advanced_guides/evaluation_turbomind.md

Co-authored-by: Tong Gao <gaotongxiao@gmail.com>

* Update docs/en/advanced_guides/evaluation_turbomind.md

Co-authored-by: Tong Gao <gaotongxiao@gmail.com>

* update

---------

Co-authored-by: Tong Gao <gaotongxiao@gmail.com>
2023-08-10 16:25:11 +08:00

56 lines
1.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 评测LMDeploy模型
我们支持评测使用[LMDeploy](https://github.com/InternLM/lmdeploy)加速过的大语言模型。LMDeploy 由 MMDeploy 和 MMRazor 团队联合开发,是涵盖了 LLM 任务的全套轻量化、部署和服务解决方案。 **TurboMind** 是 LMDeploy 推出的高效推理引擎。OpenCompass 对 TurboMind 进行了适配,本教程将介绍如何使用 OpenCompass 来对 TurboMind 加速后的模型进行评测。
# 环境配置
## 安装OpenCompass
请根据OpenCompass[安装指南](https://opencompass.readthedocs.io/en/latest/get_started.html) 来安装算法库和准备数据集。
## 安装LMDeploy
使用pip安装LMDeploy( python 3.8+)
```shell
pip install lmdeploy
```
# 评测
我们使用InternLM作为例子来介绍如何评测
## 第一步: 获取InternLM模型
```shell
# 1. Download InternLM model(or use the cached model's checkpoint)
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co/internlm/internlm-chat-7b /path/to/internlm-chat-7b
# if you want to clone without large files just their pointers
# prepend your git clone with the following env var:
GIT_LFS_SKIP_SMUDGE=1
# 2. Convert InternLM model to turbomind's format, which will be in "./workspace" by default
python3 -m lmdeploy.serve.turbomind.deploy internlm-chat-7b /path/to/internlm-chat-7b
```
## 第二步: 验证转换后的模型
```shell
python -m lmdeploy.turbomind.chat ./workspace
```
## 第三步: 评测转换后的模型
在OpenCompass项目文件执行
```shell
python run.py configs/eval_internlm_chat_7b_turbomind.py -w outputs/turbomind
```
当模型完成推理和指标计算后,我们便可获得模型的评测结果