OpenCompass/configs/multimodal/visualglm/visualglm_6b_flickr30k.py
Yike Yuan 97fdc51102
[Fix] Fix performance issue of visualglm. (#424)
* [Fix] Visualglm performance fixed.

* [Fix] Hide ckpt path.
2023-09-21 19:54:23 +08:00

47 lines
1.6 KiB
Python

from opencompass.multimodal.models.visualglm import (VisualGLMBasePostProcessor, VisualGLMBasePromptConstructor)
# dataloader settings
val_pipeline = [
dict(type='mmpretrain.LoadImageFromFile'),
dict(type='mmpretrain.ToPIL', to_rgb=True),
dict(type='mmpretrain.torchvision/Resize',
size=(224, 224),
interpolation=3),
dict(type='mmpretrain.torchvision/ToTensor'),
dict(type='mmpretrain.torchvision/Normalize',
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711)),
dict(type='mmpretrain.PackInputs', algorithm_keys=['image_id'])
]
dataset = dict(type='mmpretrain.Flickr30kCaption',
data_root='data/flickr30k',
ann_file='annotations/dataset_flickr30k.json',
data_prefix='images',
split='val',
pipeline=val_pipeline)
visualglm_flickr30k_dataloader = dict(batch_size=1,
num_workers=4,
dataset=dataset,
collate_fn=dict(type='pseudo_collate'),
sampler=dict(type='DefaultSampler', shuffle=False))
# model settings
visualglm_flickr30k_model = dict(
type='visualglm',
pretrained_path='/path/to/visualglm', # or Huggingface repo id
is_caption_task=True,
prompt_constructor=dict(type=VisualGLMBasePromptConstructor, system_prompt='Describe the image.'),
post_processor=dict(type=VisualGLMBasePostProcessor)
)
# evaluation settings
visualglm_flickr30k_evaluator = [
dict(
type='mmpretrain.COCOCaption',
ann_file='data/flickr30k/annotations/flickr30k_val_gt.json',
) # noqa
]