OpenCompass/configs/multimodal/mplug_owl/mplug_owl_7b_mmbench.py
Yike Yuan bd50bad8b5
[Feat] Support mm models on public dataset and fix several issues. (#412)
* [Feat] Add public dataset support for visualglm, qwenvl, and flamingo

* [Fix] MMBench related changes.

* [Fix] Openflamingo inference.

* [Fix] Hide ckpt path.

* [Fix] Pre-commit.

---------

Co-authored-by: Haodong Duan <dhd.efz@gmail.com>
2023-09-19 19:08:44 +08:00

49 lines
1.4 KiB
Python

from opencompass.multimodal.models.mplug_owl import (
MplugOwlMMBenchPostProcessor, MplugOwlMMBenchPromptConstructor)
# dataloader settings
val_pipeline = [
dict(type='mmpretrain.torchvision/Resize',
size=(224, 224),
interpolation=3),
dict(type='mmpretrain.torchvision/ToTensor'),
dict(
type='mmpretrain.torchvision/Normalize',
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711),
),
dict(
type='mmpretrain.PackInputs',
algorithm_keys=[
'question', 'answer', 'category', 'l2-category', 'context',
'index', 'options_dict', 'options'
],
),
]
dataset = dict(type='opencompass.MMBenchDataset',
data_file='data/mmbench/mmbench_test_20230712.tsv',
pipeline=val_pipeline)
mplug_owl_mmbench_dataloader = dict(
batch_size=1,
num_workers=4,
dataset=dataset,
collate_fn=dict(type='pseudo_collate'),
sampler=dict(type='DefaultSampler', shuffle=False),
)
# model settings
mplug_owl_mmbench_model = dict(
type='mplug_owl-7b',
model_path='/mplug-owl-llama-7b-ft',
prompt_constructor=dict(type=MplugOwlMMBenchPromptConstructor),
post_processor=dict(type=MplugOwlMMBenchPostProcessor)
) # noqa
# evaluation settings
mplug_owl_mmbench_evaluator = [
dict(type='opencompass.DumpResults',
save_path='work_dirs/mplug_owl-7b-mmagibench-v0.1.0.xlsx')
]