mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* [Feat] Add public dataset support of VisualGLM. * [Feat] Refactor LLaVA. * [Feat] Add public dataset support of LlaVA. * [Fix] Add arg.
51 lines
1.4 KiB
Python
51 lines
1.4 KiB
Python
from opencompass.multimodal.models.llava import LLaVAVQAPromptConstructor, LLaVABasePostProcessor
|
|
|
|
# dataloader settings
|
|
val_pipeline = [
|
|
dict(type='mmpretrain.LoadImageFromFile'),
|
|
dict(type='mmpretrain.ToPIL', to_rgb=True),
|
|
dict(type='mmpretrain.torchvision/Resize',
|
|
size=(224, 224),
|
|
interpolation=3),
|
|
dict(type='mmpretrain.torchvision/ToTensor'),
|
|
dict(
|
|
type='mmpretrain.torchvision/Normalize',
|
|
mean=(0.48145466, 0.4578275, 0.40821073),
|
|
std=(0.26862954, 0.26130258, 0.27577711),
|
|
),
|
|
dict(
|
|
type='mmpretrain.PackInputs',
|
|
algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'],
|
|
meta_keys=['question_id', 'image_id'],
|
|
)
|
|
]
|
|
|
|
dataset = dict(
|
|
type='mmpretrain.TextVQA',
|
|
data_root='data/textvqa',
|
|
ann_file='annotations/TextVQA_0.5.1_val.json',
|
|
pipeline=val_pipeline,
|
|
data_prefix='images/train_images',
|
|
)
|
|
|
|
llava_textvqa_dataloader = dict(
|
|
batch_size=1,
|
|
num_workers=4,
|
|
dataset=dataset,
|
|
collate_fn=dict(type='pseudo_collate'),
|
|
sampler=dict(type='DefaultSampler', shuffle=False),
|
|
)
|
|
|
|
# model settings
|
|
llava_textvqa_model = dict(
|
|
type='llava',
|
|
model_path='/path/to/llava',
|
|
prompt_constructor=dict(type=LLaVAVQAPromptConstructor),
|
|
post_processor=dict(type=LLaVABasePostProcessor)
|
|
) # noqa
|
|
|
|
# evaluation settings
|
|
llava_textvqa_evaluator = [dict(type='mmpretrain.VQAAcc')]
|
|
|
|
|