mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
51 lines
1.5 KiB
Python
51 lines
1.5 KiB
Python
from opencompass.multimodal.models.llava import LLaVAScienceQAPromptConstructor, LLaVABasePostProcessor
|
|
|
|
# dataloader settings
|
|
val_pipeline = [
|
|
dict(type='mmpretrain.LoadImageFromFile'),
|
|
dict(type='mmpretrain.ToPIL', to_rgb=True),
|
|
dict(type='mmpretrain.torchvision/Resize',
|
|
size=(224, 224),
|
|
interpolation=3),
|
|
dict(type='mmpretrain.torchvision/ToTensor'),
|
|
dict(
|
|
type='mmpretrain.torchvision/Normalize',
|
|
mean=(0.48145466, 0.4578275, 0.40821073),
|
|
std=(0.26862954, 0.26130258, 0.27577711),
|
|
),
|
|
dict(type='mmpretrain.PackInputs',
|
|
algorithm_keys=[
|
|
'question', 'gt_answer', 'choices', 'hint', 'lecture', 'solution', 'has_image'
|
|
])
|
|
]
|
|
|
|
dataset = dict(type='mmpretrain.ScienceQA',
|
|
data_root='./data/scienceqa',
|
|
split='val',
|
|
split_file='pid_splits.json',
|
|
ann_file='problems.json',
|
|
image_only=True,
|
|
data_prefix=dict(img_path='val'),
|
|
pipeline=val_pipeline)
|
|
|
|
llava_scienceqa_dataloader = dict(
|
|
batch_size=1,
|
|
num_workers=4,
|
|
dataset=dataset,
|
|
collate_fn=dict(type='pseudo_collate'),
|
|
sampler=dict(type='DefaultSampler', shuffle=False),
|
|
)
|
|
|
|
# model settings
|
|
llava_scienceqa_model = dict(
|
|
type='llava',
|
|
model_path='/path/to/llava',
|
|
prompt_constructor=dict(type=LLaVAScienceQAPromptConstructor),
|
|
post_processor=dict(type=LLaVABasePostProcessor)
|
|
) # noqa
|
|
|
|
# evaluation settings
|
|
llava_scienceqa_evaluator = [dict(type='mmpretrain.ScienceQAMetric')]
|
|
|
|
|