OpenCompass/configs/multimodal/llava/llava_7b_flickr30k.py
Yike Yuan 3f601f420b
[Feat] Support public dataset of visualglm and llava. (#265)
* [Feat] Add public dataset support of VisualGLM.

* [Feat] Refactor LLaVA.

* [Feat] Add public dataset support of LlaVA.

* [Fix] Add  arg.
2023-08-25 15:44:32 +08:00

53 lines
1.5 KiB
Python

from opencompass.multimodal.models.llava import LLaVABasePromptConstructor, LLaVABasePostProcessor
# dataloader settings
val_pipeline = [
dict(type='mmpretrain.LoadImageFromFile'),
dict(type='mmpretrain.ToPIL', to_rgb=True),
dict(type='mmpretrain.torchvision/Resize',
size=(224, 224),
interpolation=3),
dict(type='mmpretrain.torchvision/ToTensor'),
dict(
type='mmpretrain.torchvision/Normalize',
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711),
),
dict(type='mmpretrain.PackInputs', algorithm_keys=['image_id']),
]
dataset = dict(type='mmpretrain.Flickr30kCaption',
data_root='data/flickr30k',
ann_file='annotations/dataset_flickr30k.json',
data_prefix='images',
split='val',
pipeline=val_pipeline)
llava_flickr30k_dataloader = dict(
batch_size=1,
num_workers=4,
dataset=dataset,
collate_fn=dict(type='pseudo_collate'),
sampler=dict(type='DefaultSampler', shuffle=False),
)
# model settings
llava_flickr30k_model = dict(
type='llava',
model_path='/path/to/llava',
is_caption_task=True,
prompt_constructor=dict(type=LLaVABasePromptConstructor),
post_processor=dict(type=LLaVABasePostProcessor)
) # noqa
# evaluation settings
llava_flickr30k_evaluator = [
dict(
type='mmpretrain.COCOCaption',
ann_file='data/flickr30k/annotations/flickr30k_val_gt.json',
) # noqa
]