OpenCompass/opencompass/models/turbomind_with_tf_above_v4_33.py
Songyang Zhang c84bc18ac1
[Update] Support OlympiadBench-Math/OmniMath/LiveMathBench-Hard (#1899)
* [Update] Support OlympiadBench-Math/OmniMath/LiveMathBench-Hard with LLM Verify

* Update

* Update

* Update DeepSeek-R1 example

* Update DeepSeek-R1 example

* Update DeepSeek-R1 example
2025-03-03 18:56:11 +08:00

204 lines
8.9 KiB
Python

# flake8: noqa
# yapf: disable
import copy
from typing import Dict, List, Optional, Union
from opencompass.models.base import BaseModel
from opencompass.utils.logging import get_logger
from opencompass.utils.prompt import PromptList
from .huggingface_above_v4_33 import (_convert_chat_messages,
_format_with_fast_chat_template,
_get_meta_template,
_get_possible_max_seq_len)
PromptType = Union[PromptList, str]
def valid_str(string, coding='utf-8'):
"""decode text according to its encoding type."""
invalid_chars = [b'\xef\xbf\xbd']
bstr = bytes(string, coding)
for invalid_char in invalid_chars:
bstr = bstr.replace(invalid_char, b'')
ret = bstr.decode(encoding=coding, errors='ignore')
return ret
class TurboMindModelwithChatTemplate(BaseModel):
def __init__(
self,
path: str,
tokenizer_only: bool = False,
backend: str = 'turbomind',
engine_config: Dict = {},
gen_config: Dict = {},
max_seq_len: int = None,
meta_template: Optional[Dict] = None,
fastchat_template: Optional[str] = None,
stop_words: List[str] = [],
drop_middle: bool = False,
):
self.logger = get_logger()
self.path = path
self.tokenizer_only = tokenizer_only
self.drop_middle = drop_middle
self.template_parser = _get_meta_template(meta_template)
self.max_seq_len = _get_possible_max_seq_len(max_seq_len, path)
from lmdeploy import version_info
from transformers import AutoTokenizer
self.version_info = version_info
self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
if not tokenizer_only:
DEFAULT_ENGING_CONFIG = {'session_len': self.max_seq_len}
_engine_config = DEFAULT_ENGING_CONFIG.copy()
_engine_config.update(engine_config)
self.pipe = self._build_pipe(path, backend, _engine_config)
else:
self.pipe = None
self.gen_config = gen_config
self.fastchat_template = fastchat_template
self.stop_words = list(set(stop_words + self._get_potential_stop_words(path)))
self.logger.info(f'using stop words: {self.stop_words}')
def _get_potential_stop_words(self, path: Optional[str]):
from transformers import GenerationConfig
potential_stop_words = []
try:
generation_config = GenerationConfig.from_pretrained(path)
except:
generation_config = None
if generation_config and hasattr(generation_config, 'eos_token_id'):
if isinstance(generation_config.eos_token_id, int):
potential_stop_words.append(self.tokenizer.decode(generation_config.eos_token_id))
else:
assert isinstance(generation_config.eos_token_id, list)
for token_id in generation_config.eos_token_id:
stop_word = self.tokenizer.decode(token_id)
if stop_word.startswith(' '):
self.logger.warning(f'stop_word "{stop_word}" contains blanks, which will be stripped')
stop_word = stop_word.strip()
potential_stop_words.append(stop_word)
if self.tokenizer.eos_token is not None:
potential_stop_words.append(self.tokenizer.eos_token)
potential_stop_words = list(set(potential_stop_words))
potential_stop_words = [s for s in potential_stop_words if s]
return potential_stop_words
def generate(self,
inputs: List[str],
max_out_len: int,
min_out_len: Optional[int] = None,
stopping_criteria: List[str] = [],
do_sample: Optional[bool] = None,
temperature: float = 1.0,
**kwargs) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str]): A list of prompts
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
if self.drop_middle:
inputs_drop_middle = []
for input in inputs:
if isinstance(input, PromptList):
input = input[0]['prompt']
input_ids = self.tokenizer([input],
padding=False,
truncation=False)['input_ids'][0]
original_len = len(input_ids)
# Reserve space for max_out_len in max_seq_len
effective_max_len = self.max_seq_len - max_out_len
if len(input_ids) > effective_max_len:
self.logger.info(f'Input length {original_len} exceeds effective sequence length {effective_max_len} (max_seq_len {self.max_seq_len} - max_out_len {max_out_len}), truncating...')
input_ids = input_ids[:effective_max_len //
2] + input_ids[-effective_max_len //
2:]
self.logger.info(f'Input length after truncation: {len(input_ids)}')
input = self.tokenizer.decode(input_ids,
skip_special_tokens=True)
inputs_drop_middle.append(input)
inputs = inputs_drop_middle
assert isinstance(inputs, List), f'List(str) is expected, but got {type(inputs)}'
messages = _convert_chat_messages(inputs)
if self.fastchat_template:
messages = _format_with_fast_chat_template(messages, self.fastchat_template)
else:
# NOTE: DeepSeek-R1 series model's chat template will add <think> after the
messages = [self.tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False) for m in messages]
# LMDeploy tokenize prompts by AutoTokenizer with its default parameter "add_special_token=True"
# OC add bos_token in the prompt, which requires tokenizing prompts using "add_speicial_token=False"
# But LMDeploy doesn't have "add_speicial_token" in the pipeline API. So, we remove bos_token
# from messages as a workaround
if self.tokenizer.bos_token:
bos_token = self.tokenizer.bos_token
messages = [message.removeprefix(bos_token) if message.startswith(bos_token) else message for message in messages]
stop_words = list(set(self.stop_words + stopping_criteria))
DEFAULT_GEN_CONFIG = {
'max_new_tokens': max_out_len,
'min_new_tokens': 1,
'stop_words': stop_words,
}
gen_config = copy.deepcopy(DEFAULT_GEN_CONFIG)
gen_config.update(self.gen_config)
if max_out_len is not None:
gen_config['max_new_tokens'] = max_out_len
if min_out_len is not None:
gen_config['min_new_tokens'] = min_out_len
if not(do_sample or ('do_sample' in self.gen_config and self.gen_config['do_sample'])):
if self.version_info >= (0, 6, 0):
gen_config['do_sample'] = False
else:
gen_config['top_k'] = 1
from lmdeploy import GenerationConfig
gen_config = {k: v for k, v in gen_config.items() if hasattr(GenerationConfig, k)}
gen_config = GenerationConfig(**gen_config)
self.logger.info('Generation Config of LMdeploy: ')
self.logger.info(gen_config)
results = []
outputs = self.pipe(messages, gen_config=gen_config, do_preprocess=False)
for output in outputs:
results.append(output.text)
for s in stop_words:
results = [r.split(s)[0] for r in results]
return results
def get_token_len(self, prompt: str) -> int:
"""Get lengths of the tokenized strings.
Args:
prompt (str): Input string.
Returns:
int: Length of the input tokens
"""
m = _convert_chat_messages([prompt])[0]
t = self.tokenizer.apply_chat_template(m, add_generation_prompt=True, return_dict=True)
return len(t['input_ids'])
def _build_pipe(self, model_path, backend, engine_config):
from lmdeploy import (PytorchEngineConfig, TurbomindEngineConfig,
pipeline)
assert backend in ['pytorch', 'turbomind'], \
f'unsupported backend type: {backend}'
if backend == 'turbomind':
filtered = {k: v for k, v in engine_config.items() if hasattr(TurbomindEngineConfig, k)}
backend_config = TurbomindEngineConfig(**filtered)
else:
filtered = {k: v for k, v in engine_config.items() if hasattr(PytorchEngineConfig, k)}
backend_config = PytorchEngineConfig(**filtered)
return pipeline(model_path, backend_config=backend_config, log_level='WARNING')