OpenCompass/configs/datasets/CHARM/charm_reason_ppl_3da4de.py

58 lines
2.0 KiB
Python

import os
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.datasets import CharmDataset
from opencompass.openicl.icl_evaluator import AccwithDetailsEvaluator
charm_tasks = [
['Chinese_Anachronisms_Judgment', 'AB'],
['Chinese_Movie_and_Music_Recommendation', 'ABCD'],
['Chinese_Natural_Language_Inference', 'ABC'],
['Chinese_Reading_Comprehension', 'ABCD'],
['Chinese_Sequence_Understanding', 'ABCD'],
['Chinese_Sport_Understanding', 'AB'],
['Chinese_Time_Understanding', 'ABCD'],
['Global_Anachronisms_Judgment', 'AB'],
['Global_Movie_and_Music_Recommendation', 'ABCD'],
['Global_Natural_Language_Inference', 'ABC'],
['Global_Reading_Comprehension', 'ABCD'],
['Global_Sequence_Understanding', 'ABCD'],
['Global_Sport_Understanding', 'AB'],
['Global_Time_Understanding', 'ABCDEF'],
]
charm_reason_datasets = []
for task_name, options in charm_tasks:
with open(os.path.join(os.path.dirname(__file__), 'few-shot-examples', f'{task_name}_Direct.txt'), 'r') as f:
few_shot_example = f.read()
charm_reason_reader_cfg = dict(input_columns=['input'], output_column='target')
charm_reason_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
f'({opt})': f'{few_shot_example}\n{{input}}\nA: {opt}' for opt in options
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
charm_reason_eval_cfg = dict(evaluator=dict(type=AccwithDetailsEvaluator))
charm_reason_datasets.append(
dict(
type=CharmDataset,
abbr=f'charm-reason-{task_name}_Direct',
path=f'data/CHARM/reasoning',
name=task_name,
reader_cfg=charm_reason_reader_cfg,
infer_cfg=charm_reason_infer_cfg,
eval_cfg=charm_reason_eval_cfg,
)
)