mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* update gemini api and add gemini models * add openai models * update CHARM evaluation * add CHARM memorization tasks * add CharmMemSummarizer (output eval details for memorization-independent reasoning analysis * update CHARM readme --------- Co-authored-by: wujiang <wujiang@pjlab.org.cn>
64 lines
2.2 KiB
Python
64 lines
2.2 KiB
Python
import os
|
|
from mmengine.config import read_base
|
|
|
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
from opencompass.datasets import CharmDataset, CharmMemoryEvaluator, LMEvaluator
|
|
|
|
with read_base():
|
|
from .charm_memory_settings import charm_memory_tasks, judge_system_prompts, dataset_path
|
|
|
|
charm_memory_datasets = []
|
|
|
|
for _task in charm_memory_tasks:
|
|
|
|
charm_memory_reader_cfg = dict(input_columns=['input'],
|
|
output_column='target')
|
|
|
|
charm_memory_infer_cfg = dict(
|
|
prompt_template=dict(
|
|
type=PromptTemplate,
|
|
template=dict(round=[
|
|
dict(role='HUMAN', prompt='请尽可能简短地回答下述问题。\n问题:{input}\n答:')
|
|
]),
|
|
),
|
|
retriever=dict(type=ZeroRetriever),
|
|
inferencer=dict(type=GenInferencer, max_out_len=512),
|
|
)
|
|
|
|
if _task == 'Chinese_Movie_and_Music_Recommendation':
|
|
charm_memory_eval_cfg = dict(
|
|
evaluator=dict(type=CharmMemoryEvaluator),
|
|
pred_role='BOT',
|
|
)
|
|
else:
|
|
judge_system_prompt = judge_system_prompts[_task]
|
|
charm_memory_eval_cfg = dict(
|
|
evaluator=dict(
|
|
type=LMEvaluator,
|
|
prompt_template=dict(
|
|
type=PromptTemplate,
|
|
template=dict(round=[
|
|
dict(
|
|
role='HUMAN',
|
|
prompt=judge_system_prompt +
|
|
"\n\n[Question]\n{input}\n[The Start of Reference Answer]\n{target}\n[The End of Reference Answer]\n\n[The Start of Assistant's Answer]\n{prediction}\n[The End of Assistant's Answer]" # noqa
|
|
),
|
|
]),
|
|
),
|
|
),
|
|
pred_role='BOT',
|
|
)
|
|
|
|
charm_memory_datasets.append(
|
|
dict(
|
|
type=CharmDataset,
|
|
path=dataset_path,
|
|
name=_task,
|
|
abbr='charm-memory-' + _task,
|
|
reader_cfg=charm_memory_reader_cfg,
|
|
infer_cfg=charm_memory_infer_cfg.copy(),
|
|
eval_cfg=charm_memory_eval_cfg.copy(),
|
|
))
|