mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* add calm dataset * modify config max_out_len * update README * Modify README * update README * update README * update README * update README * update README * add summarizer and modify readme * delete summarizer config comment * update summarizer * modify same response to all questions * update README
43 lines
1.8 KiB
Python
43 lines
1.8 KiB
Python
import re
|
|
def check_standalization(model_response, prompt_style, type):
|
|
if any (match in type for match in ['NIE','NDE','ETT','CDE','ATE']):
|
|
if model_response.startswith(("{\"answer\":")) and model_response.endswith(("}")):
|
|
return 0
|
|
else:
|
|
return 1
|
|
elif any (match in type for match in ['PN','PS']):
|
|
if model_response.startswith(("{\"prob\":")) and model_response.endswith(("}")):
|
|
return 0
|
|
else:
|
|
return 1
|
|
|
|
def check_empty(model_response):
|
|
if model_response == "":
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
def check_repetition(model_response):
|
|
if any(response in model_response for response in ["input info: imagine a self-contained","provide the calculation result to four decimal places", "输入信息:设想一个", "请根据上述信息,给出计算结果(答案保留四位小数)"]):
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
def contains_chinese(text):
|
|
chinese_pattern = re.compile(r'[\u4e00-\u9fff]+')
|
|
result = 1 if chinese_pattern.search(text) is not None else 0
|
|
|
|
return result
|
|
|
|
def contains_english(text):
|
|
english_pattern = re.compile(r'[A-Za-z]{7,}') # Taking into account 'fake' and 'random' modes, and considering that the shortest occurrence of English characters in an 'answer' is of length 6, therefore detecting lengths of 7 or more.
|
|
result = 1 if english_pattern.search(text) is not None else 0
|
|
|
|
return result
|
|
|
|
def check_abnormality(preds):
|
|
affect_num = sum(1 for pred in preds if pred == 0.1234) # 0.1234 is the example value in prompt for probability computation
|
|
affected = affect_num / len(preds)
|
|
abnormalities = "All Yes" if affected == 1 else \
|
|
"All No" if all(pred == 0 for pred in preds) else 0
|
|
return abnormalities |