OpenCompass/opencompass/datasets/calm/evaluation/core_metrics.py
Peng Bo edd0ffdf70
Calm dataset (#1287)
* add calm dataset

* modify config max_out_len

* update README

* Modify README

* update README

* update README

* update README

* update README

* update README

* add summarizer and modify readme

* delete summarizer config comment

* update summarizer

* modify same response to all questions

* update README
2024-07-26 11:48:16 +08:00

308 lines
13 KiB
Python

import json
import importlib
from pathlib import Path
task_to_accuracy_module_map = {
# association/
# correlation/
"CORR-B_correlation_CN":"choice",
"CORR-B_correlation_EN":"choice",
# explaining_away_effect/
"EAE-B_exp-away_CN":"choice",
"EAE-B_exp-away_EN":"choice",
# causal_discovery/
# abstract_reasoning/
"AR-B_CaLM-AR_CN":"choice",
"AR-B_CaLM-AR_EN":"choice",
# causal_attribution/
"CA-B_FA_CN":"choice",
"CA-B_FA_EN":"choice",
"CA-B_FP_CN":"choice",
"CA-B_FP_EN":"choice",
# event_causality_identification/
"ECI-B_CTB_CN":"choice",
"ECI-B_CTB_EN":"choice",
"ECI-B_ESC_CN":"choice",
"ECI-B_ESC_EN":"choice",
"ECI-B_MAVEN-ERE_CN":"choice",
"ECI-B_MAVEN-ERE_EN":"choice",
# pairwise_causal_discovery/
"PCD-B_COPA_CN":"choice",
"PCD-B_COPA_EN":"choice",
"PCD-B_E-CARE_CN":"choice",
"PCD-B_E-CARE_EN":"choice",
"PCD-C_COPA_CN":"choice",
"PCD-C_COPA_EN":"choice",
"PCD-C_E-CARE_CN":"choice",
"PCD-C_E-CARE_EN":"choice",
# counterfactual/
# actual_causality/
"AC-B_causal_judgement_CN":"choice",
"AC-B_causal_judgement_EN":"choice",
# causal_explanation_generation/
"CEG-O_E-CARE_CN":"open-ended",
"CEG-O_E-CARE_EN":"open-ended",
# counterfactual_reasoning/
"CR-B_det-counterfactual_CN":"choice",
"CR-B_det-counterfactual_EN":"choice",
"CR-C_CRASS_CN":"choice",
"CR-C_CRASS_EN":"choice",
# effect_of_the_treatment_on_the_treated/
"ETT-B_ETT-natural_CN":"choice",
"ETT-B_ETT-natural_EN":"choice",
"ETT-P_ETT-basic_CN":"prob",
"ETT-P_ETT-basic_EN":"prob",
"ETT-P_ETT-hard_CN":"prob",
"ETT-P_ETT-hard_EN":"prob",
# natural_direct_effect/
"NDE-B_NDE-natural_CN":"choice",
"NDE-B_NDE-natural_EN":"choice",
"NDE-P_NDE-basic_CN":"prob",
"NDE-P_NDE-basic_EN":"prob",
"NDE-P_NDE-hard_CN":"prob",
"NDE-P_NDE-hard_EN":"prob",
# natural_indirect_effect/
"NIE-B_NIE-natural_CN":"choice",
"NIE-B_NIE-natural_EN":"choice",
"NIE-P_NIE-basic_CN":"prob",
"NIE-P_NIE-basic_EN":"prob",
"NIE-P_NIE-hard_CN":"prob",
"NIE-P_NIE-hard_EN":"prob",
# probability_of_necessity/
"PN-P_PN-basic_CN":"prob",
"PN-P_PN-basic_EN":"prob",
"PN-P_PN-hard_CN":"prob",
"PN-P_PN-hard_EN":"prob",
# probability_of_sufficiency/
"PS-P_PS-basic_CN":"prob",
"PS-P_PS-basic_EN":"prob",
"PS-P_PS-hard_CN":"prob",
"PS-P_PS-hard_EN":"prob",
# intervention/
# average_treatment_effect/
"ATE-B_ATE-natural_CN":"choice",
"ATE-B_ATE-natural_EN":"choice",
"ATE-P_ATE-basic_CN":"prob",
"ATE-P_ATE-basic_EN":"prob",
"ATE-P_ATE-hard_CN":"prob",
"ATE-P_ATE-hard_EN":"prob",
# backdoor_adjustment_set/
"BAS-B_backadj_CN":"choice",
"BAS-B_backadj_EN":"choice",
"BAS-C_max-BAS_CN":"choice",
"BAS-C_max-BAS_EN":"choice",
"BAS-C_min-BAS_CN":"choice",
"BAS-C_min-BAS_EN":"choice",
"BAS-C_mix-BAS_CN":"choice",
"BAS-C_mix-BAS_EN":"choice",
# causal_effect_identification/
"CEI-B_0.2-UC_CN":"choice",
"CEI-B_0.2-UC_EN":"choice",
"CEI-B_0.4-UC_CN":"choice",
"CEI-B_0.4-UC_EN":"choice",
"CEI-B_0.6-UC_CN":"choice",
"CEI-B_0.6-UC_EN":"choice",
"CEI-B_0.8-UC_CN":"choice",
"CEI-B_0.8-UC_EN":"choice",
# collider_bias/
"CB-B_collider-bias_CN":"choice",
"CB-B_collider-bias_EN":"choice",
# controlled_direct_effect/
"CDE-B_CDE-natural_CN":"choice",
"CDE-B_CDE-natural_EN":"choice",
"CDE-P_CDE-basic_CN":"prob",
"CDE-P_CDE-basic_EN":"prob",
"CDE-P_CDE-hard_CN":"prob",
"CDE-P_CDE-hard_EN":"prob",
# frontdoor_adjustment_set/
"FAS-C_FAS_CN":"choice",
"FAS-C_FAS_EN":"choice",
# instrumental_variable/
"IV-C_CaLM-IV_CN":"choice",
"IV-C_CaLM-IV_EN":"choice",
}
def initialize_core_metric_evaluation_components(task):
"""
Loads the labeling and accuracy functions dynamically based on the specified task for core metric computation.
Parameters:
- task: The specific task to load functions for.
Returns:
- Tuple containing the ground truth labeling function, prediction labeling function,
and the accuracy function.
Raises:
- NotImplementedError: If no functions are found for the specified task.
"""
task_to_labeling_module_map = {
# association/
# correlation/
"CORR-B_correlation_CN":"CLADDER",
"CORR-B_correlation_EN":"CLADDER",
# explaining_away_effect/
"EAE-B_exp-away_CN":"CLADDER",
"EAE-B_exp-away_EN":"CLADDER",
# causal_discovery/
# abstract_reasoning/
"AR-B_CaLM-AR_CN":"AR-B_CaLM-AR",
"AR-B_CaLM-AR_EN":"AR-B_CaLM-AR",
# causal_attribution/
"CA-B_FA_CN":"CA-B_FA",
"CA-B_FA_EN":"CA-B_FA",
"CA-B_FP_CN":"CA-B_FP",
"CA-B_FP_EN":"CA-B_FP",
# event_causality_identification/
"ECI-B_CTB_CN":"ECI",
"ECI-B_CTB_EN":"ECI",
"ECI-B_ESC_CN":"ECI",
"ECI-B_ESC_EN":"ECI",
"ECI-B_MAVEN-ERE_CN":"ECI",
"ECI-B_MAVEN-ERE_EN":"ECI",
# pairwise_causal_discovery/
"PCD-B_COPA_CN":"PCD-B",
"PCD-B_COPA_EN":"PCD-B",
"PCD-B_E-CARE_CN":"PCD-B",
"PCD-B_E-CARE_EN":"PCD-B",
"PCD-C_COPA_CN":"PCD-C",
"PCD-C_COPA_EN":"PCD-C",
"PCD-C_E-CARE_CN":"PCD-C",
"PCD-C_E-CARE_EN":"PCD-C",
# counterfactual/
# actual_causality/
"AC-B_causal_judgement_CN":"AC-B_causal_judgement",
"AC-B_causal_judgement_EN":"AC-B_causal_judgement",
# causal_explanation_generation/
"CEG-O_E-CARE_CN":"CEG-O_E-CARE",
"CEG-O_E-CARE_EN":"CEG-O_E-CARE",
# counterfactual_reasoning/
"CR-B_det-counterfactual_CN":"CLADDER",
"CR-B_det-counterfactual_EN":"CLADDER",
"CR-C_CRASS_CN":"CR-C_CRASS",
"CR-C_CRASS_EN":"CR-C_CRASS",
# effect_of_the_treatment_on_the_treated/
"ETT-B_ETT-natural_CN":"Natural",
"ETT-B_ETT-natural_EN":"Natural",
"ETT-P_ETT-basic_CN":"Probability",
"ETT-P_ETT-basic_EN":"Probability",
"ETT-P_ETT-hard_CN":"Probability",
"ETT-P_ETT-hard_EN":"Probability",
# natural_direct_effect/
"NDE-B_NDE-natural_CN":"Natural",
"NDE-B_NDE-natural_EN":"Natural",
"NDE-P_NDE-basic_CN":"Probability",
"NDE-P_NDE-basic_EN":"Probability",
"NDE-P_NDE-hard_CN":"Probability",
"NDE-P_NDE-hard_EN":"Probability",
# natural_indirect_effect/
"NIE-B_NIE-natural_CN":"Natural",
"NIE-B_NIE-natural_EN":"Natural",
"NIE-P_NIE-basic_CN":"Probability",
"NIE-P_NIE-basic_EN":"Probability",
"NIE-P_NIE-hard_CN":"Probability",
"NIE-P_NIE-hard_EN":"Probability",
# probability_of_necessity/
"PN-P_PN-basic_CN":"Probability",
"PN-P_PN-basic_EN":"Probability",
"PN-P_PN-hard_CN":"Probability",
"PN-P_PN-hard_EN":"Probability",
# probability_of_sufficiency/
"PS-P_PS-basic_CN":"Probability",
"PS-P_PS-basic_EN":"Probability",
"PS-P_PS-hard_CN":"Probability",
"PS-P_PS-hard_EN":"Probability",
# intervention/
# average_treatment_effect/
"ATE-B_ATE-natural_CN":"Natural",
"ATE-B_ATE-natural_EN":"Natural",
"ATE-P_ATE-basic_CN":"Probability",
"ATE-P_ATE-basic_EN":"Probability",
"ATE-P_ATE-hard_CN":"Probability",
"ATE-P_ATE-hard_EN":"Probability",
# backdoor_adjustment_set/
"BAS-B_backadj_CN":"CLADDER",
"BAS-B_backadj_EN":"CLADDER",
"BAS-C_max-BAS_CN":"AS",
"BAS-C_max-BAS_EN":"AS",
"BAS-C_min-BAS_CN":"AS",
"BAS-C_min-BAS_EN":"AS",
"BAS-C_mix-BAS_CN":"AS",
"BAS-C_mix-BAS_EN":"AS",
# causal_effect_identification/
"CEI-B_0.2-UC_CN":"CEI-B",
"CEI-B_0.2-UC_EN":"CEI-B",
"CEI-B_0.4-UC_CN":"CEI-B",
"CEI-B_0.4-UC_EN":"CEI-B",
"CEI-B_0.6-UC_CN":"CEI-B",
"CEI-B_0.6-UC_EN":"CEI-B",
"CEI-B_0.8-UC_CN":"CEI-B",
"CEI-B_0.8-UC_EN":"CEI-B",
# collider_bias/
"CB-B_collider-bias_CN":"CLADDER",
"CB-B_collider-bias_EN":"CLADDER",
# controlled_direct_effect/
"CDE-B_CDE-natural_CN":"Natural",
"CDE-B_CDE-natural_EN":"Natural",
"CDE-P_CDE-basic_CN":"Probability",
"CDE-P_CDE-basic_EN":"Probability",
"CDE-P_CDE-hard_CN":"Probability",
"CDE-P_CDE-hard_EN":"Probability",
# frontdoor_adjustment_set/
"FAS-C_FAS_CN":"AS",
"FAS-C_FAS_EN":"AS",
# instrumental_variable/
"IV-C_CaLM-IV_CN":"AS",
"IV-C_CaLM-IV_EN":"AS",
}
labeling_module_name = task_to_labeling_module_map.get(task)
if labeling_module_name:
labeling_module = importlib.import_module(f"opencompass.datasets.calm.evaluation.labeling.{labeling_module_name}")
get_ground_truth_label = labeling_module.get_gt_label
get_predicted_label = labeling_module.get_pred_label
else:
raise NotImplementedError(f"No labeling functions found for task {task}.")
accuracy_module_name = task_to_accuracy_module_map.get(task)
if accuracy_module_name:
accuracy_module = importlib.import_module(f"opencompass.datasets.calm.evaluation.accuracy.{accuracy_module_name}")
get_accuracy = accuracy_module.compute_acc
else:
raise NotImplementedError(f"No accuracy functions found for task {task}.")
return get_ground_truth_label, get_predicted_label, get_accuracy
def compute_core_metrics(items, task, prompt_style, gt_items):
"""
Computes core metrics for a given set of items based on the ground truth items.
Args:
items (list): The list of items generated by the model.
task (str): The task type.
prompt_style (str): The prompt style.
gt_items (list): The list of ground truth items.
Returns:
tuple: A tuple containing the computed core metrics dictionary and the list of predicted labels.
Raises:
AssertionError: If there is an index mismatch between items and ground truth items.
"""
core_metrics_dict = {}
get_gt_label, get_pred_label, compute_acc = initialize_core_metric_evaluation_components(task)
gt_list, pred_list, pred_AP_list = [], [], []
# get labels
assert len(items) == len(gt_items), "Length mismatch between items and ground truth items."
for item, gt_item in zip(items, gt_items):
gt_label = get_gt_label(gt_item)
type = task.split("-")[0]
pred_label = get_pred_label(item, gt_item, prompt_style, type)
gt_list.append(gt_label)
pred_list.append(pred_label)
# compute metrics
core_metrics_dict["Accuracy"] = compute_acc(gt_list, pred_list)
return core_metrics_dict, pred_list