OpenCompass/configs/datasets/ds1000/ds1000_compl_service_eval_gen_cbc84f.py
2024-05-14 15:35:58 +08:00

69 lines
1.7 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import DS1000Dataset, DS1000ServiceEvaluator
ds1000_reader_cfg = dict(
input_columns=['prompt'],
output_column='test_column',
train_split='test',
test_split='test')
ds1000_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='{prompt}',
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
ds1000_eval_cfg_dict = {
lib: dict(
evaluator=dict(
type=DS1000ServiceEvaluator,
lib=lib,
ip_address=
'localhost', # replace to your code_eval_server ip_address, port
port=5000
),
pred_role='BOT')
for lib in [
'Pandas',
'Numpy',
'Tensorflow',
'Scipy',
'Sklearn',
'Pytorch',
'Matplotlib',
]
}
# The DS-1000 dataset can be downloaded from
# https://github.com/HKUNLP/DS-1000/blob/main/ds1000_data.zip
ds1000_datasets = [
dict(
abbr=f'ds1000_{lib}',
type=DS1000Dataset,
path='./data/ds1000_data/',
libs=f'{lib}',
mode='Completion',
reader_cfg=ds1000_reader_cfg,
infer_cfg=ds1000_infer_cfg,
eval_cfg=ds1000_eval_cfg_dict[lib],
) for lib in [
'Pandas',
'Numpy',
'Tensorflow',
'Scipy',
'Sklearn',
'Pytorch',
'Matplotlib',
]
]