OpenCompass/configs/datasets/cmb/cmb_gen_dfb5c4.py
2024-05-14 15:35:58 +08:00

50 lines
1.7 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import CMBDataset
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.utils.text_postprocessors import multiple_select_postprocess
cmb_datasets = []
for split in ['val', 'test']:
cmb_reader_cfg = dict(
input_columns=['exam_type', 'exam_class', 'question_type', 'question', 'option_str'],
output_column='answer',
train_split=split,
test_split=split,
)
cmb_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=f'以下是中国{{exam_type}}{{exam_class}}考试的一道{{question_type}},不需要做任何分析和解释,直接输出答案选项。\n{{question}}\n{{option_str}} \n 答案: ',
),
dict(role='BOT', prompt='{answer}'),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=10),
)
cmb_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=multiple_select_postprocess),
)
cmb_datasets.append(
dict(
abbr='cmb' if split == 'val' else 'cmb_test',
type=CMBDataset,
path='./data/CMB/',
reader_cfg=cmb_reader_cfg,
infer_cfg=cmb_infer_cfg,
eval_cfg=cmb_eval_cfg,
)
)