OpenCompass/configs/datasets/TheoremQA/TheoremQA_5shot_gen_6f0af8.py
2024-05-14 15:35:58 +08:00

46 lines
1.6 KiB
Python

from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import TheoremQADatasetV3, TheoremQA_postprocess_v3, TheoremQAEvaluatorV3
with read_base():
from .TheoremQA_few_shot_examples import examples
num_shot = 5
rounds = []
for index, (query, response) in enumerate(examples[:num_shot]):
if index == 0:
desc = 'You are supposed to provide a solution to a given problem.\n\n'
else:
desc = ''
rounds += [
dict(role='HUMAN', prompt=f'{desc}Problem:\n{query}\nSolution:'),
dict(role='BOT', prompt=f'{response}')
]
rounds += [dict(role='HUMAN', prompt='Problem:\n{Question}\nSolution:')]
TheoremQA_reader_cfg = dict(input_columns=['Question', 'Answer_type'], output_column='Answer', train_split='test', test_split='test')
TheoremQA_infer_cfg = dict(
prompt_template=dict(type=PromptTemplate, template=dict(round=rounds)),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024, stopping_criteria=['Problem:', 'Problem']),
)
TheoremQA_eval_cfg = dict(
evaluator=dict(type=TheoremQAEvaluatorV3),
pred_postprocessor=dict(type=TheoremQA_postprocess_v3)
)
TheoremQA_datasets = [
dict(
abbr='TheoremQA',
type=TheoremQADatasetV3,
path='data/TheoremQA/theoremqa_test.json',
reader_cfg=TheoremQA_reader_cfg,
infer_cfg=TheoremQA_infer_cfg,
eval_cfg=TheoremQA_eval_cfg,
)
]