mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
53 lines
1.5 KiB
Python
53 lines
1.5 KiB
Python
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
from opencompass.datasets import TabMWPDataset, TabMWPEvaluator
|
|
|
|
# None of the TabMWP dataset in huggingface is correctly parsed, so we use our own dataset reader
|
|
# Please download the dataset from https://github.com/lupantech/PromptPG/tree/main
|
|
|
|
input_format='TQ'
|
|
output_format='A'
|
|
elements = {'Q': 'Question: {question}',
|
|
'T': 'Table: {table}',
|
|
'S': 'Solution: {solution}',
|
|
'A': 'Answer: The answer is {answer}.',
|
|
'AS': 'Answer: The answer is {answer}. BECAUSE: {solution}',
|
|
'SA': 'Answer: {solution} The answer is {answer}.'}
|
|
|
|
|
|
TabMWP_reader_cfg = dict(
|
|
input_columns=['question', 'table'],
|
|
output_column='test_elements',
|
|
train_split='dev',
|
|
)
|
|
|
|
TabMWP_infer_cfg = dict(
|
|
prompt_template=dict(
|
|
type=PromptTemplate,
|
|
template=dict(
|
|
round=[
|
|
dict(
|
|
role='HUMAN',
|
|
prompt= '\n'.join(elements[label] for label in input_format)
|
|
),
|
|
],
|
|
),
|
|
),
|
|
retriever=dict(type=ZeroRetriever),
|
|
inferencer=dict(type=GenInferencer),
|
|
)
|
|
|
|
TabMWP_eval_cfg = dict(
|
|
evaluator=dict(type=TabMWPEvaluator)
|
|
)
|
|
|
|
TabMWP_datasets = [
|
|
dict(
|
|
type=TabMWPDataset,
|
|
path='./data/tabmwp/',
|
|
reader_cfg=TabMWP_reader_cfg,
|
|
infer_cfg=TabMWP_infer_cfg,
|
|
eval_cfg=TabMWP_eval_cfg,)
|
|
]
|