OpenCompass/opencompass/tasks/openicl_eval.py
liushz ed248af136
[Fix] Fix some sc errors (#177)
* Update sc

* Update sc doc

* Apply suggestions from code review

Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com>

---------

Co-authored-by: liuhongwei <liuhongwei@pjlab.org.cn>
Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com>
2023-08-10 16:40:32 +08:00

210 lines
7.7 KiB
Python

import argparse
import os.path as osp
import time
from collections import Counter
from typing import Optional
import mmengine
from mmengine.config import Config, ConfigDict
from mmengine.utils import mkdir_or_exist
from opencompass.registry import (ICL_EVALUATORS, MODELS, TASKS,
TEXT_POSTPROCESSORS)
from opencompass.tasks.base import BaseTask
from opencompass.utils import (build_dataset_from_cfg, get_infer_output_path,
get_logger, task_abbr_from_cfg)
@TASKS.register_module(force=(__name__ == '__main__')) # A hack for script run
class OpenICLEvalTask(BaseTask):
"""OpenICL Evaluation Task.
This task is used to evaluate the metric between predictions and
references.
"""
name_prefix = 'OpenICLEval'
log_subdir = 'logs/eval'
output_subdir = 'results'
def __init__(self, cfg: ConfigDict):
super().__init__(cfg)
self.num_gpus = 0
self.logger = get_logger()
def get_command(self, cfg_path, template):
script_path = __file__
command = f'python3 {script_path} {cfg_path}'
return template.format(task_cmd=command)
def run(self):
for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs):
for dataset_cfg in dataset_cfgs:
self.model_cfg = model_cfg
self.dataset_cfg = dataset_cfg
# Load Dataset
self.eval_cfg = self.dataset_cfg.get('eval_cfg')
self.output_column = dataset_cfg['reader_cfg']['output_column']
out_path = get_infer_output_path(
self.model_cfg, self.dataset_cfg,
osp.join(self.work_dir, 'results'))
if osp.exists(out_path):
continue
self._score()
def _score(self):
test_set = build_dataset_from_cfg(self.dataset_cfg).test
# Postprocess dataset if necessary
if 'dataset_postprocessor' in self.eval_cfg:
TEXT_POSTPROCESSORS.get(
self.eval_cfg['dataset_postprocessor']['type'])
def postprocess(sample):
s = sample[self.output_column]
proc = TEXT_POSTPROCESSORS.get(
self.eval_cfg['dataset_postprocessor']['type'])
sample[self.output_column] = proc(s)
return sample
test_set = test_set.map(postprocess)
# Load predictions
filename = get_infer_output_path(
self.model_cfg, self.dataset_cfg,
osp.join(self.work_dir, 'predictions'))
# in case the prediction is partial
root, ext = osp.splitext(filename)
partial_filename = root + '_0' + ext
# Get sc_size if use Self-Consistency
sc_size = self.eval_cfg.get('sc_size')
if not osp.exists(osp.realpath(filename)) and not osp.exists(
osp.realpath(partial_filename)):
result = {'error': 'No predictions found.'}
else:
if osp.exists(osp.realpath(filename)):
preds = mmengine.load(filename)
pred_strs = [
preds[str(i)]['prediction'] for i in range(len(preds))
]
else:
filename = partial_filename
pred_strs = []
i = 1
while osp.exists(osp.realpath(filename)):
preds = mmengine.load(filename)
filename = root + f'_{i}' + ext
i += 1
pred_strs += [
preds[str(i)]['prediction'] for i in range(len(preds))
]
if ('pred_role' in self.eval_cfg
and 'meta_template' in self.model_cfg
and not MODELS.get(self.model_cfg['type']).is_api):
# Create a prompt template for role config parsing
from opencompass.models.base import LMTemplateParser
parser = LMTemplateParser(self.model_cfg['meta_template'])
role = parser.roles[self.eval_cfg['pred_role']]
if sc_size is not None:
for pred in pred_strs:
if not isinstance(pred, list):
raise TypeError(
'The prediction for Self-Consistency'
'must be list.')
pred_strs.append([
self._extract_role_pred(sc_pred,
role.get('begin', None),
role.get('end', None))
for sc_pred in pred
])
else:
pred_strs = [
self._extract_role_pred(pred, role.get('begin', None),
role.get('end', None))
for pred in pred_strs
]
# Postprocess predictions if necessary
if 'pred_postprocessor' in self.eval_cfg:
proc = TEXT_POSTPROCESSORS.get(
self.eval_cfg['pred_postprocessor']['type'])
if sc_size is not None:
pred_strs = [[proc(s) for s in preds]
for preds in pred_strs]
else:
pred_strs = [proc(s) for s in pred_strs]
# Get majority voting predictions if use self-consistency
if sc_size is not None:
pred_strs = [
Counter(s).most_common(1)[0][0] for s in pred_strs
]
icl_evaluator = ICL_EVALUATORS.build(self.eval_cfg['evaluator'])
result = icl_evaluator.score(
predictions=pred_strs, references=test_set[self.output_column])
if 'error' in result:
self.logger.error(
f'Task {task_abbr_from_cfg(self.cfg)}: {result["error"]}')
return
else:
self.logger.info(f'Task {task_abbr_from_cfg(self.cfg)}: {result}')
# Save result
out_path = get_infer_output_path(self.model_cfg, self.dataset_cfg,
osp.join(self.work_dir, 'results'))
mkdir_or_exist(osp.split(out_path)[0])
mmengine.dump(result, out_path)
def _extract_role_pred(self, s: str, begin_str: Optional[str],
end_str: Optional[str]) -> str:
"""Extract the role prediction from the full prediction string. The
role prediction may be the substring between the begin and end string.
Args:
s (str): Full prediction string.
begin_str (str): The beginning string of the role
end_str (str): The ending string of the role.
Returns:
str: The extracted role prediction.
"""
start = 0
end = len(s)
if begin_str:
begin_idx = s.find(begin_str)
if begin_idx != -1:
start = begin_idx + len(begin_str)
if end_str:
# TODO: Support calling tokenizer for the accurate eos token
# and avoid such hardcode
end_idx = s.find(end_str[:1], start)
if end_idx != -1:
end = end_idx
return s[start:end]
def parse_args():
parser = argparse.ArgumentParser(description='Score Calculator')
parser.add_argument('config', help='Config file path')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
cfg = Config.fromfile(args.config)
start_time = time.time()
inferencer = OpenICLEvalTask(cfg)
inferencer.run()
end_time = time.time()
get_logger().info(f'time elapsed: {end_time - start_time:.2f}s')