mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* Update sc * Update sc doc * Apply suggestions from code review Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com> --------- Co-authored-by: liuhongwei <liuhongwei@pjlab.org.cn> Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com>
197 lines
8.0 KiB
Python
197 lines
8.0 KiB
Python
"""Self-Consistency Generation Inferencer."""
|
|
|
|
import os
|
|
import os.path as osp
|
|
from typing import List, Optional
|
|
|
|
import mmengine
|
|
import torch
|
|
from tqdm import tqdm
|
|
|
|
from opencompass.models.base import BaseModel
|
|
|
|
from ..icl_prompt_template import PromptTemplate
|
|
from ..icl_retriever import BaseRetriever
|
|
from ..utils.logging import get_logger
|
|
from .icl_base_inferencer import BaseInferencer, GenInferencerOutputHandler
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
class SCInferencer(BaseInferencer):
|
|
"""Self-Consistency Inferencer class to evaluate by multiple generations.
|
|
|
|
Attributes:
|
|
model (:obj:`BaseModelWrapper`, optional): The module to inference.
|
|
max_seq_len (:obj:`int`, optional): Maximum number of tokenized words
|
|
allowed by the LM.
|
|
batch_size (:obj:`int`, optional): Batch size for the
|
|
:obj:`DataLoader`.
|
|
output_json_filepath (:obj:`str`, optional): File path for output
|
|
`JSON` file.
|
|
output_json_filename (:obj:`str`, optional): File name for output
|
|
`JSON` file.
|
|
gen_field_replace_token (:obj:`str`, optional): Used to replace the
|
|
generation field token when generating prompts.
|
|
save_every (:obj:`int`, optional): Save intermediate results every
|
|
`save_every` epochs.
|
|
generation_kwargs (:obj:`Dict`, optional): Parameters for the
|
|
:obj:`model.generate()` method.
|
|
sc_size (:obj:`int`, optional): Sample size for Self-Consistency
|
|
infer_type (:obj:`str`, optional): Infer CoT type for
|
|
:obj:`inference()` method.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model: BaseModel,
|
|
max_out_len: int,
|
|
max_seq_len: Optional[int] = None,
|
|
batch_size: Optional[int] = 1,
|
|
gen_field_replace_token: Optional[str] = '',
|
|
output_json_filepath: Optional[str] = './icl_inference_output',
|
|
output_json_filename: Optional[str] = 'predictions',
|
|
save_every: Optional[int] = None,
|
|
fix_id_list: Optional[List[int]] = None,
|
|
sc_size: Optional[int] = 1,
|
|
infer_type: Optional[str] = '',
|
|
generation_kwargs: dict = {},
|
|
**kwargs) -> None:
|
|
super().__init__(
|
|
model=model,
|
|
max_seq_len=max_seq_len,
|
|
batch_size=batch_size,
|
|
output_json_filename=output_json_filename,
|
|
output_json_filepath=output_json_filepath,
|
|
**kwargs,
|
|
)
|
|
|
|
self.gen_field_replace_token = gen_field_replace_token
|
|
self.generation_kwargs = generation_kwargs
|
|
self.max_out_len = max_out_len
|
|
self.fix_id_list = fix_id_list
|
|
self.sc_size = sc_size
|
|
|
|
if self.model.is_api and save_every is None:
|
|
save_every = 1
|
|
self.save_every = save_every
|
|
|
|
def inference(self,
|
|
retriever: BaseRetriever,
|
|
ice_template: Optional[PromptTemplate] = None,
|
|
prompt_template: Optional[PromptTemplate] = None,
|
|
output_json_filepath: Optional[str] = None,
|
|
output_json_filename: Optional[str] = None) -> List:
|
|
# 1. Preparation for output logs
|
|
output_handler = GenInferencerOutputHandler()
|
|
|
|
if output_json_filepath is None:
|
|
output_json_filepath = self.output_json_filepath
|
|
if output_json_filename is None:
|
|
output_json_filename = self.output_json_filename
|
|
|
|
# 2. Get results of retrieval process
|
|
if 'Fix' in retriever.__class__.__name__:
|
|
ice_idx_list = retriever.retrieve(self.fix_id_list)
|
|
else:
|
|
ice_idx_list = retriever.retrieve()
|
|
|
|
# 3. Generate prompts for testing input
|
|
prompt_list = self.get_generation_prompt_list_from_retriever_indices(
|
|
ice_idx_list,
|
|
retriever,
|
|
self.gen_field_replace_token,
|
|
max_seq_len=self.max_seq_len,
|
|
ice_template=ice_template,
|
|
prompt_template=prompt_template)
|
|
|
|
# Create tmp json file for saving intermediate results and future
|
|
# resuming
|
|
index = 0
|
|
tmp_json_filepath = os.path.join(output_json_filepath,
|
|
'tmp_' + output_json_filename)
|
|
if osp.exists(tmp_json_filepath):
|
|
# TODO: move resume to output handler
|
|
tmp_result_dict = mmengine.load(tmp_json_filepath)
|
|
output_handler.results_dict = tmp_result_dict
|
|
index = len(tmp_result_dict)
|
|
|
|
# 4. Wrap prompts with Dataloader
|
|
dataloader = self.get_dataloader(prompt_list[index:], self.batch_size)
|
|
|
|
# 5. Inference for prompts in each batch
|
|
logger.info('Starting inference process...')
|
|
for entry in tqdm(dataloader, disable=not self.is_main_process):
|
|
# TODO: add more types of CoT method
|
|
# 5-1. Inference sc_size times with local model
|
|
with torch.no_grad():
|
|
parsed_entries = self.model.parse_template(entry, mode='gen')
|
|
sc_results = []
|
|
for _ in range(self.sc_size):
|
|
results = self.model.generate_from_template(
|
|
entry,
|
|
max_out_len=self.max_out_len,
|
|
**self.generation_kwargs)
|
|
sc_results.append(results)
|
|
sc_prediction = list(map(list, zip(*sc_results)))
|
|
generated = sc_prediction
|
|
|
|
# 5-3. Save current output
|
|
for prompt, prediction in zip(parsed_entries, generated):
|
|
output_handler.save_results(prompt, prediction, index)
|
|
index = index + 1
|
|
|
|
# 5-4. Save intermediate results
|
|
if (self.save_every is not None and index % self.save_every == 0
|
|
and self.is_main_process):
|
|
output_handler.write_to_json(output_json_filepath,
|
|
'tmp_' + output_json_filename)
|
|
|
|
# 6. Output
|
|
if self.is_main_process:
|
|
os.makedirs(output_json_filepath, exist_ok=True)
|
|
output_handler.write_to_json(output_json_filepath,
|
|
output_json_filename)
|
|
if osp.exists(tmp_json_filepath):
|
|
os.remove(tmp_json_filepath)
|
|
|
|
return [
|
|
sample['prediction']
|
|
for sample in output_handler.results_dict.values()
|
|
]
|
|
|
|
def get_generation_prompt_list_from_retriever_indices(
|
|
self,
|
|
ice_idx_list: List[List[int]],
|
|
retriever: BaseRetriever,
|
|
gen_field_replace_token: str,
|
|
max_seq_len: Optional[int] = None,
|
|
ice_template: Optional[PromptTemplate] = None,
|
|
prompt_template: Optional[PromptTemplate] = None):
|
|
prompt_list = []
|
|
for idx, ice_idx in enumerate(ice_idx_list):
|
|
ice = retriever.generate_ice(ice_idx, ice_template=ice_template)
|
|
prompt = retriever.generate_prompt_for_generate_task(
|
|
idx,
|
|
ice,
|
|
gen_field_replace_token=gen_field_replace_token,
|
|
ice_template=ice_template,
|
|
prompt_template=prompt_template)
|
|
if max_seq_len is not None:
|
|
prompt_token_num = self.model.get_token_len_from_template(
|
|
prompt, mode='gen')
|
|
while len(ice_idx) > 0 and prompt_token_num > max_seq_len:
|
|
ice_idx = ice_idx[:-1]
|
|
ice = retriever.generate_ice(ice_idx,
|
|
ice_template=ice_template)
|
|
prompt = retriever.generate_prompt_for_generate_task(
|
|
idx,
|
|
ice,
|
|
gen_field_replace_token=gen_field_replace_token,
|
|
ice_template=ice_template,
|
|
prompt_template=prompt_template)
|
|
prompt_token_num = self.model.get_token_len_from_template(
|
|
prompt, mode='gen')
|
|
prompt_list.append(prompt)
|
|
return prompt_list
|