OpenCompass/opencompass/models/baichuan_api.py
Songyang Zhang e25c5f9525
[Enhancement] Update API Interface and Mixtral (#681)
* [Enhancement] Update API interface

* [Enhancement] Update API interface

* Update mixtral

* Update readme
2023-12-10 13:29:26 +08:00

172 lines
5.4 KiB
Python

import hashlib
import json
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union
import requests
from opencompass.utils.prompt import PromptList
from .base_api import BaseAPIModel
PromptType = Union[PromptList, str]
class BaiChuan(BaseAPIModel):
"""Model wrapper around Baichuan.
Documentation: https://platform.baichuan-ai.com/docs/api
Args:
path (str): The name of Baichuan model.
e.g. `Baichuan2-53B`
api_key (str): Provided api key
secretkey (str): secretkey in order to obtain access_token
url (str): Provide url
query_per_second (int): The maximum queries allowed per second
between two consecutive calls of the API. Defaults to 1.
max_seq_len (int): Unused here.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
retry (int): Number of retires if the API call fails. Defaults to 2.
"""
def __init__(
self,
path: str,
api_key: str,
secret_key: str,
url: str,
query_per_second: int = 2,
max_seq_len: int = 2048,
meta_template: Optional[Dict] = None,
retry: int = 2,
generation_kwargs: Dict = {
'temperature': 0.3,
'top_p': 0.85,
'top_k': 5,
'with_search_enhance': False,
}): # noqa E125
super().__init__(path=path,
max_seq_len=max_seq_len,
query_per_second=query_per_second,
meta_template=meta_template,
retry=retry,
generation_kwargs=generation_kwargs)
self.api_key = api_key
self.secret_key = secret_key
self.url = url
self.model = path
def generate(
self,
inputs: List[str or PromptList],
max_out_len: int = 512,
) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str or PromptList]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, inputs,
[max_out_len] * len(inputs)))
self.flush()
return results
def _generate(
self,
input: str or PromptList,
max_out_len: int = 512,
) -> str:
"""Generate results given an input.
Args:
inputs (str or PromptList): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
str: The generated string.
"""
assert isinstance(input, (str, PromptList))
if isinstance(input, str):
messages = [{'role': 'user', 'content': input}]
else:
messages = []
for item in input:
msg = {'content': item['prompt']}
if item['role'] == 'HUMAN':
msg['role'] = 'user'
elif item['role'] == 'BOT':
msg['role'] = 'assistant'
messages.append(msg)
data = {'model': self.model, 'messages': messages}
data.update(self.generation_kwargs)
def calculate_md5(input_string):
md5 = hashlib.md5()
md5.update(input_string.encode('utf-8'))
encrypted = md5.hexdigest()
return encrypted
json_data = json.dumps(data)
time_stamp = int(time.time())
signature = calculate_md5(self.secret_key + json_data +
str(time_stamp))
headers = {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + self.api_key,
'X-BC-Request-Id': 'your requestId',
'X-BC-Timestamp': str(time_stamp),
'X-BC-Signature': signature,
'X-BC-Sign-Algo': 'MD5',
}
max_num_retries = 0
while max_num_retries < self.retry:
self.acquire()
raw_response = requests.request('POST',
url=self.url,
headers=headers,
json=data)
response = raw_response.json()
self.release()
if response is None:
print('Connection error, reconnect.')
# if connect error, frequent requests will casuse
# continuous unstable network, therefore wait here
# to slow down the request
self.wait()
continue
if raw_response.status_code == 200 and response['code'] == 0:
msg = response['data']['messages'][0]['content']
return msg
if response['code'] != 0:
print(response)
time.sleep(1)
continue
print(response)
max_num_retries += 1
raise RuntimeError(response)