mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
69 lines
1.7 KiB
Python
69 lines
1.7 KiB
Python
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
from opencompass.datasets import DS1000Dataset, DS1000ServiceEvaluator
|
|
|
|
ds1000_reader_cfg = dict(
|
|
input_columns=["prompt"],
|
|
output_column="test_column",
|
|
train_split='test',
|
|
test_split='test')
|
|
|
|
ds1000_infer_cfg = dict(
|
|
prompt_template=dict(
|
|
type=PromptTemplate,
|
|
template=dict(round=[
|
|
dict(
|
|
role="HUMAN",
|
|
prompt="{prompt}",
|
|
),
|
|
]),
|
|
),
|
|
retriever=dict(type=ZeroRetriever),
|
|
inferencer=dict(type=GenInferencer),
|
|
)
|
|
|
|
ds1000_eval_cfg_dict = {
|
|
lib: dict(
|
|
evaluator=dict(
|
|
type=DS1000ServiceEvaluator,
|
|
lib=lib,
|
|
ip_address=
|
|
"localhost", # replace to your code_eval_server ip_address, port
|
|
port=5000
|
|
),
|
|
pred_role="BOT")
|
|
for lib in [
|
|
'Pandas',
|
|
'Numpy',
|
|
'Tensorflow',
|
|
'Scipy',
|
|
'Sklearn',
|
|
'Pytorch',
|
|
'Matplotlib',
|
|
]
|
|
}
|
|
|
|
# The DS-1000 dataset can be downloaded from
|
|
# https://github.com/HKUNLP/DS-1000/blob/main/ds1000_data.zip
|
|
ds1000_datasets = [
|
|
dict(
|
|
abbr=f"ds1000_{lib}",
|
|
type=DS1000Dataset,
|
|
path="./data/ds1000_data/",
|
|
libs=f"{lib}",
|
|
mode="Completion",
|
|
reader_cfg=ds1000_reader_cfg,
|
|
infer_cfg=ds1000_infer_cfg,
|
|
eval_cfg=ds1000_eval_cfg_dict[lib],
|
|
) for lib in [
|
|
'Pandas',
|
|
'Numpy',
|
|
'Tensorflow',
|
|
'Scipy',
|
|
'Sklearn',
|
|
'Pytorch',
|
|
'Matplotlib',
|
|
]
|
|
]
|