OpenCompass/configs/eval_internlm_turbomind.py
RunningLeon e34c552282
[Feature] Update configs for evaluating chat models like qwen, baichuan, llama2 using turbomind backend (#721)
* add llama2 test

* fix

* test qwen chat-7b

* test w4

* add baichuan2

* update

* update

* update configs and docs

* update
2023-12-21 18:22:17 +08:00

92 lines
2.6 KiB
Python

from mmengine.config import read_base
from opencompass.models.turbomind import TurboMindModel
with read_base():
# choose a list of datasets
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
# and output the results in a choosen format
from .summarizers.medium import summarizer
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
# # config for internlm-7b model
internlm_7b = dict(
type=TurboMindModel,
abbr='internlm-7b-turbomind',
path="./turbomind",
max_out_len=100,
max_seq_len=2048,
batch_size=32,
concurrency=32,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# # config for internlm-7b-w4 model
internlm_7b_w4 = dict(
type=TurboMindModel,
abbr='internlm-7b-w4-turbomind',
path="./turbomind",
max_out_len=100,
max_seq_len=2048,
batch_size=32,
concurrency=32,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# # config for internlm-7b-w4kv8 model
internlm_7b_w4kv8 = dict(
type=TurboMindModel,
abbr='internlm-7b-w4kv8-turbomind',
path="./turbomind",
max_out_len=100,
max_seq_len=2048,
batch_size=32,
concurrency=32,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# config for internlm-20b model
internlm_20b = dict(
type=TurboMindModel,
abbr='internlm-20b-turbomind',
path="./turbomind",
max_out_len=100,
max_seq_len=2048,
batch_size=8,
concurrency=8,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# config for internlm-20b-w4 model
internlm_20b_w4 = dict(
type=TurboMindModel,
abbr='internlm-20b-w4-turbomind',
path="./turbomind",
max_out_len=100,
max_seq_len=2048,
batch_size=16,
concurrency=16,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# config for internlm-20b-w4kv8 model
internlm_20b_w4kv8 = dict(
type=TurboMindModel,
abbr='internlm-20b-w4kv8-turbomind',
path="./turbomind",
max_out_len=100,
max_seq_len=2048,
batch_size=16,
concurrency=16,
run_cfg=dict(num_gpus=1, num_procs=1),
)
models = [internlm_20b]