OpenCompass/configs/eval_internlm_chat_turbomind.py
RunningLeon e34c552282
[Feature] Update configs for evaluating chat models like qwen, baichuan, llama2 using turbomind backend (#721)
* add llama2 test

* fix

* test qwen chat-7b

* test w4

* add baichuan2

* update

* update

* update configs and docs

* update
2023-12-21 18:22:17 +08:00

203 lines
5.3 KiB
Python

from mmengine.config import read_base
from opencompass.models.turbomind import TurboMindModel
with read_base():
# choose a list of datasets
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
# from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
# from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
# from .datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import WSC_datasets
# from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
# from .datasets.race.race_gen_69ee4f import race_datasets
# from .datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets
# and output the results in a choosen format
from .summarizers.medium import summarizer
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
internlm_meta_template = dict(round=[
dict(role='HUMAN', begin='<|User|>:', end='\n'),
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
],
eos_token_id=103028)
llama2_meta_template = dict(
round=[
dict(role='HUMAN', begin='[INST] ', end=' [/INST]'),
dict(role='BOT', generate=True),
],
eos_token_id=2)
qwen_meta_template = dict(round=[
dict(role='HUMAN', begin='\n<|im_start|>user\n', end='<|im_end|>'),
dict(role='BOT',
begin='\n<|im_start|>assistant\n',
end='<|im_end|>',
generate=True)
])
baichuan2_meta_template = dict(round=[
dict(role='HUMAN', begin='<reserved_106>'),
dict(role='BOT', begin='<reserved_107>', generate=True)
])
# config for internlm-chat-7b
internlm_chat_7b = dict(
type=TurboMindModel,
abbr='internlm-chat-7b-turbomind',
path='./turbomind',
max_out_len=100,
max_seq_len=2048,
batch_size=32,
concurrency=32,
meta_template=internlm_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
internlm_chat_7b_w4 = dict(
type=TurboMindModel,
abbr='internlm-chat-7b-w4-turbomind',
path='./turbomind',
max_out_len=100,
max_seq_len=2048,
batch_size=32,
concurrency=32,
meta_template=internlm_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# config for internlm-chat-7b-w4kv8 model
internlm_chat_7b_w4kv8 = dict(
type=TurboMindModel,
abbr='internlm-chat-7b-w4kv8-turbomind',
path='./turbomind',
max_out_len=100,
max_seq_len=2048,
batch_size=32,
concurrency=32,
meta_template=internlm_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# config for internlm-chat-20b
internlm_chat_20b = dict(
type=TurboMindModel,
abbr='internlm-chat-20b-turbomind',
path='./turbomind',
max_out_len=100,
max_seq_len=2048,
batch_size=8,
concurrency=8,
meta_template=internlm_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# config for internlm-chat-20b-w4 model
internlm_chat_20b_w4 = dict(
type=TurboMindModel,
abbr='internlm-chat-20b-w4-turbomind',
path='./turbomind',
max_out_len=100,
max_seq_len=2048,
batch_size=16,
concurrency=16,
meta_template=internlm_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# config for internlm-chat-20b-w4kv8 model
internlm_chat_20b_w4kv8 = dict(
type=TurboMindModel,
abbr='internlm-chat-20b-w4kv8-turbomind',
path='./turbomind',
max_out_len=100,
max_seq_len=2048,
batch_size=16,
concurrency=16,
meta_template=internlm_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# config for llama2-chat-7b
llama2_chat_7b = dict(
type=TurboMindModel,
abbr='llama2-chat-7b-turbomind',
path='./turbomind',
max_out_len=100,
max_seq_len=2048,
batch_size=16,
concurrency=32,
meta_template=llama2_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# config for llama2-chat-13b
llama2_chat_13b = dict(
type=TurboMindModel,
abbr='llama2-chat-13b-turbomind',
path='./turbomind',
max_out_len=100,
max_seq_len=2048,
batch_size=16,
concurrency=16,
meta_template=llama2_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# config for llama2-chat-70b
llama2_chat_70b = dict(
type=TurboMindModel,
abbr='llama2-chat-70b-turbomind',
path='./turbomind',
max_out_len=100,
max_seq_len=2048,
batch_size=8,
concurrency=8,
meta_template=llama2_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# config for qwen-chat-7b
qwen_chat_7b = dict(
type=TurboMindModel,
abbr='qwen-chat-7b-turbomind',
path='./turbomind',
max_out_len=100,
max_seq_len=2048,
batch_size=16,
concurrency=32,
meta_template=qwen_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# config for qwen-chat-7b
qwen_chat_14b = dict(
type=TurboMindModel,
abbr='qwen-chat-14b-turbomind',
path='./turbomind',
max_out_len=100,
max_seq_len=2048,
batch_size=16,
concurrency=32,
meta_template=qwen_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
# config for baichuan2-chat-7b
baichuan2_chat_7b = dict(
type=TurboMindModel,
abbr='baichuan2-chat-7b-turbomind',
path='./turbomind',
max_out_len=100,
max_seq_len=2048,
batch_size=16,
concurrency=32,
meta_template=baichuan2_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
models = [internlm_chat_20b]