OpenCompass/configs/datasets/commonsenseqa_cn/commonsenseqacn_ppl_971f48.py
liushz e019c831fe
[Feature] Add Chinese version: commonsenseqa, crowspairs and nq (#144)
* add Chinese version: csqa crowspairs nq

* Update cn_data

* Update cn_data

* update format

---------

Co-authored-by: liuhongwei <liuhongwei@pjlab.org.cn>
Co-authored-by: Leymore <zfz-960727@163.com>
2023-11-30 15:33:02 +08:00

53 lines
1.4 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CommonsenseQADataset_CN
commonsenseqacn_reader_cfg = dict(
input_columns=["question", "A", "B", "C", "D", "E"],
output_column="answerKey",
test_split="validation",
)
_ice_template = dict(
type=PromptTemplate,
template={
ans: dict(
begin="</E>",
round=[
dict(role="HUMAN", prompt="问题: {question}\n答案: "),
dict(role="BOT", prompt=ans_token),
],
)
for ans, ans_token in [
["A", "{A}"],
["B", "{B}"],
["C", "{C}"],
["D", "{D}"],
["E", "{E}"],
]
},
ice_token="</E>",
)
commonsenseqacn_infer_cfg = dict(
prompt_template=_ice_template,
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
commonsenseqacn_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
commonsenseqacn_datasets = [
dict(
abbr="commonsenseqa_cn",
type=CommonsenseQADataset_CN,
path="./data/commonsenseqa_cn/validation.jsonl",
reader_cfg=commonsenseqacn_reader_cfg,
infer_cfg=commonsenseqacn_infer_cfg,
eval_cfg=commonsenseqacn_eval_cfg,
)
]