mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* add judgellm prompts * add judgelm prompts * update import info * fix situation that no abbr in config * fix situation that no abbr in config * add summarizer for other judgellm * change config name * add maxlen * add maxlen * dict assert * dict assert * fix strings * fix strings
282 lines
11 KiB
Python
282 lines
11 KiB
Python
import argparse
|
|
import copy
|
|
import fnmatch
|
|
import os.path as osp
|
|
import random
|
|
import time
|
|
from typing import List, Optional, Union
|
|
|
|
import mmengine
|
|
from mmengine.config import Config, ConfigDict
|
|
from mmengine.utils import mkdir_or_exist
|
|
|
|
from opencompass.registry import ICL_EVALUATORS, MODELS, TEXT_POSTPROCESSORS
|
|
from opencompass.tasks.base import BaseTask
|
|
from opencompass.utils import (build_dataset_from_cfg, dataset_abbr_from_cfg,
|
|
get_infer_output_path, get_logger,
|
|
model_abbr_from_cfg, task_abbr_from_cfg)
|
|
|
|
|
|
class SubjectiveEvalTask(BaseTask):
|
|
"""Subjective Evaluation Task.
|
|
|
|
This task is used to evaluate the metric between predictions and
|
|
references.
|
|
|
|
Args:
|
|
cfg (ConfigDict): The configuration of the entire evaluation task.
|
|
"""
|
|
|
|
name_prefix = 'SubjectiveEval'
|
|
log_subdir = 'logs/eval'
|
|
output_subdir = 'results'
|
|
|
|
def __init__(self, cfg: ConfigDict):
|
|
super().__init__(cfg)
|
|
self.logger = get_logger()
|
|
judge_cfg = cfg.eval.runner.task.get('judge_cfg', {})
|
|
if type(judge_cfg) != ConfigDict:
|
|
print('*' * 100)
|
|
print('Due to different Judge model needs different summarizer and'
|
|
" prompts, we don't support multi judge model evaluation at "
|
|
'one time, please do not use list to set your judge cfg, jus'
|
|
't use a dict or list[0] should be fine. If you want to eval'
|
|
'uation multi judge model in one script, we suggest you to u'
|
|
'se a bash or bat script to start multi configs evaluation!')
|
|
print('*' * 100)
|
|
assert type(judge_cfg) == ConfigDict
|
|
run_cfg = judge_cfg.get('run_cfg', {})
|
|
self.num_gpus = run_cfg.get('num_gpus', 0)
|
|
self.num_procs = run_cfg.get('num_procs', 1)
|
|
self.judge_cfg = copy.deepcopy(judge_cfg)
|
|
|
|
def get_command(self, cfg_path, template):
|
|
"""Get the command template for the task.
|
|
|
|
Args:
|
|
cfg_path (str): The path to the config file of the task.
|
|
template (str): The template which have '{task_cmd}' to format
|
|
the command.
|
|
"""
|
|
script_path = __file__
|
|
if self.num_gpus > 0:
|
|
port = random.randint(12000, 32000)
|
|
command = (f'torchrun --master_port={port} '
|
|
f'--nproc_per_node {self.num_procs} '
|
|
f'{script_path} {cfg_path}')
|
|
else:
|
|
command = f'python {script_path} {cfg_path}'
|
|
|
|
return template.format(task_cmd=command)
|
|
|
|
def run(self):
|
|
# model_cfg can be a list of model configs
|
|
for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs):
|
|
for dataset_cfg in dataset_cfgs:
|
|
# Load Dataset
|
|
eval_cfg = dataset_cfg.get('eval_cfg')
|
|
output_column = dataset_cfg['reader_cfg']['output_column']
|
|
if type(model_cfg) == ConfigDict:
|
|
model_cfg = (model_cfg, )
|
|
model_cfg += ({
|
|
'abbr':
|
|
'judged-by--' + model_abbr_from_cfg(self.judge_cfg)
|
|
}, )
|
|
out_path = get_infer_output_path(
|
|
model_cfg, dataset_cfg, osp.join(self.work_dir, 'results'))
|
|
if osp.exists(out_path):
|
|
continue
|
|
self._score(model_cfg, dataset_cfg, eval_cfg, output_column)
|
|
|
|
def _load_model_pred(self, model_cfg: Union[ConfigDict, List[ConfigDict]],
|
|
dataset_cfg: ConfigDict,
|
|
eval_cfg: ConfigDict) -> Union[None, List[str]]:
|
|
if isinstance(model_cfg, (tuple, list)):
|
|
return [
|
|
self._load_model_pred(m, dataset_cfg, eval_cfg)
|
|
for m in model_cfg
|
|
]
|
|
|
|
# Load predictions
|
|
filename = get_infer_output_path(
|
|
model_cfg, dataset_cfg, osp.join(self.work_dir, 'predictions'))
|
|
# in case the prediction is partial
|
|
root, ext = osp.splitext(filename)
|
|
partial_filename = root + '_0' + ext
|
|
pred_strs = None
|
|
|
|
if not osp.exists(osp.realpath(filename)) and not osp.exists(
|
|
osp.realpath(partial_filename)):
|
|
return {'error': 'No predictions found.'}
|
|
else:
|
|
if osp.exists(osp.realpath(filename)):
|
|
preds = mmengine.load(filename)
|
|
pred_strs = [
|
|
preds[str(i)]['prediction'] for i in range(len(preds))
|
|
]
|
|
else:
|
|
filename = partial_filename
|
|
pred_strs = []
|
|
i = 1
|
|
while osp.exists(osp.realpath(filename)):
|
|
preds = mmengine.load(filename)
|
|
filename = root + f'_{i}' + ext
|
|
i += 1
|
|
pred_strs += [
|
|
preds[str(i)]['prediction'] for i in range(len(preds))
|
|
]
|
|
|
|
if ('pred_role' in eval_cfg and 'meta_template' in model_cfg
|
|
and not MODELS.get(model_cfg['type']).is_api):
|
|
# Create a prompt template for role config parsing
|
|
from opencompass.models.base import LMTemplateParser
|
|
parser = LMTemplateParser(model_cfg['meta_template'])
|
|
role = parser.roles[eval_cfg['pred_role']]
|
|
pred_strs = [
|
|
self._extract_role_pred(pred, role.get('begin', None),
|
|
role.get('end', None))
|
|
for pred in pred_strs
|
|
]
|
|
|
|
# Postprocess predictions if necessary
|
|
ds_abbr = dataset_abbr_from_cfg(dataset_cfg)
|
|
model_postprocessors = model_cfg.get('pred_postprocessor', {})
|
|
pred_postprocessor = None
|
|
for pattern in model_postprocessors.keys():
|
|
if fnmatch.fnmatch(ds_abbr, pattern):
|
|
pred_postprocessor = model_postprocessors[pattern]
|
|
break
|
|
if 'pred_postprocessor' in eval_cfg or pred_postprocessor:
|
|
kwargs = pred_postprocessor or eval_cfg['pred_postprocessor']
|
|
proc = TEXT_POSTPROCESSORS.get(kwargs.pop('type'))
|
|
pred_strs = [proc(s, **kwargs) for s in pred_strs]
|
|
return {
|
|
'model_name': model_abbr_from_cfg(model_cfg),
|
|
'model_preds': pred_strs
|
|
}
|
|
|
|
def _score(self, model_cfg, dataset_cfg, eval_cfg, output_column):
|
|
test_set = build_dataset_from_cfg(dataset_cfg).test
|
|
# Postprocess dataset if necessary
|
|
if 'dataset_postprocessor' in eval_cfg:
|
|
proc = TEXT_POSTPROCESSORS.get(
|
|
eval_cfg['dataset_postprocessor']['type'])
|
|
|
|
def postprocess(sample):
|
|
s = sample[output_column]
|
|
sample[output_column] = proc(s)
|
|
return sample
|
|
|
|
test_set = test_set.map(postprocess)
|
|
# Get out_path
|
|
out_path = get_infer_output_path(model_cfg, dataset_cfg,
|
|
osp.join(self.work_dir, 'results'))
|
|
new_model_cfg = []
|
|
for m_cfg in model_cfg:
|
|
if len(m_cfg) > 1:
|
|
new_model_cfg.append(m_cfg)
|
|
if len(new_model_cfg) == 1:
|
|
new_model_cfg = new_model_cfg[0]
|
|
model_preds = self._load_model_pred(new_model_cfg, dataset_cfg,
|
|
eval_cfg)
|
|
if not self.judge_cfg:
|
|
raise ValueError('missing "eval.runner.task.judge_cfg"')
|
|
eval_cfg['evaluator']['judge_cfg'] = self.judge_cfg
|
|
eval_cfg['evaluator']['dataset_cfg'] = dataset_cfg
|
|
eval_cfg['evaluator']['output_path'] = out_path
|
|
icl_evaluator = ICL_EVALUATORS.build(eval_cfg['evaluator'])
|
|
references = (test_set[output_column] if output_column else None)
|
|
|
|
if 'error' not in model_preds:
|
|
result = icl_evaluator.score(predictions=model_preds,
|
|
references=references)
|
|
else:
|
|
result = model_preds
|
|
|
|
if 'error' in result:
|
|
self.logger.error(
|
|
f'Task {task_abbr_from_cfg(self.cfg)}: {result["error"]}')
|
|
return
|
|
else:
|
|
self.logger.info(
|
|
f'Task {task_abbr_from_cfg(self.cfg)}') #: {result}')
|
|
|
|
# Save result
|
|
mkdir_or_exist(osp.split(out_path)[0])
|
|
mmengine.dump(result,
|
|
open(out_path, 'w', encoding='utf-8'),
|
|
file_format='json',
|
|
ensure_ascii=False,
|
|
indent=4)
|
|
|
|
def _extract_role_pred(self, s: str, begin_str: Optional[str],
|
|
end_str: Optional[str]) -> str:
|
|
"""Extract the role prediction from the full prediction string. The
|
|
role prediction may be the substring between the begin and end string.
|
|
|
|
Args:
|
|
s (str): Full prediction string.
|
|
begin_str (str): The beginning string of the role
|
|
end_str (str): The ending string of the role.
|
|
|
|
Returns:
|
|
str: The extracted role prediction.
|
|
"""
|
|
start = 0
|
|
end = len(s)
|
|
|
|
if begin_str:
|
|
begin_idx = s.find(begin_str)
|
|
if begin_idx != -1:
|
|
start = begin_idx + len(begin_str)
|
|
|
|
if end_str:
|
|
# TODO: Support calling tokenizer for the accurate eos token
|
|
# and avoid such hardcode
|
|
end_idx = s.find(end_str[:1], start)
|
|
if end_idx != -1:
|
|
end = end_idx
|
|
|
|
return s[start:end]
|
|
|
|
def get_output_paths(self, file_extension: str = 'json') -> List[str]:
|
|
"""Get the paths to the output files. Every file should exist if the
|
|
task succeeds.
|
|
|
|
Args:
|
|
file_extension (str): The file extension of the output files.
|
|
Default: 'json'.
|
|
"""
|
|
output_paths = []
|
|
for model, datasets in zip(self.model_cfgs, self.dataset_cfgs):
|
|
for dataset in datasets:
|
|
if type(model) == ConfigDict:
|
|
model = (model, )
|
|
model += ({
|
|
'abbr':
|
|
'judged-by--' + model_abbr_from_cfg(self.judge_cfg)
|
|
}, )
|
|
output_paths.append(
|
|
get_infer_output_path(
|
|
model, dataset,
|
|
osp.join(self.work_dir, self.output_subdir),
|
|
file_extension))
|
|
return output_paths
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='Score Calculator')
|
|
parser.add_argument('config', help='Config file path')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_args()
|
|
cfg = Config.fromfile(args.config)
|
|
start_time = time.time()
|
|
inferencer = SubjectiveEvalTask(cfg)
|
|
inferencer.run()
|
|
end_time = time.time()
|
|
get_logger().info(f'time elapsed: {end_time - start_time:.2f}s')
|