OpenCompass/opencompass/utils/result_station.py
Myhs-phz df64ae1997 fix
2025-03-03 05:03:42 +00:00

200 lines
7.0 KiB
Python

import json
import os
import os.path as osp
import re
from opencompass.utils.abbr import dataset_abbr_from_cfg, model_abbr_from_cfg
def Save_To_Station(cfg, args):
assert args.station_path is not None or 'station_path' in cfg.keys(
) and cfg['station_path'] is not None
if 'station_path' in cfg.keys() and cfg['station_path'] is not None:
station_path = cfg['station_path']
else:
station_path = args.station_path
work_dict = cfg['work_dir']
model_list = [model_abbr_from_cfg(model) for model in cfg['models']]
dataset_list = [
dataset_abbr_from_cfg(dataset) for dataset in cfg['datasets']
]
# model_list = [i['abbr'] for i in cfg['models']]
# dataset_list = [i['abbr'] for i in cfg['datasets']]
rs_exist_results = []
if 'rs_exist_results' in cfg.keys():
rs_exist_results = cfg['rs_exist_results']
for dataset in dataset_list:
result_path = osp.join(station_path, dataset)
if not osp.exists(result_path):
os.makedirs(result_path)
for model in model_list:
if [model, dataset] in rs_exist_results:
continue
result_file_name = model + '.json'
if osp.exists(osp.join(result_path, result_file_name)):
print('result of {} with {} already exists'.format(
dataset, model))
continue
else:
# get result dict
local_result_path = work_dict + '/results/' + model + '/'
local_result_json = local_result_path + dataset + '.json'
if not osp.exists(local_result_json):
raise ValueError(
'invalid file: {}'.format(local_result_json))
with open(local_result_json, 'r') as f:
this_result = json.load(f)
f.close()
# get prediction list
local_prediction_path = (work_dict + '/predictions/' + model +
'/')
local_prediction_regex = \
rf'^{re.escape(dataset)}(?:_\d+)?\.json$'
local_prediction_json = find_files_by_regex(
local_prediction_path, local_prediction_regex)
if not check_filenames(dataset, local_prediction_json):
raise ValueError(
'invalid filelist: {}'.format(local_prediction_json))
this_prediction = []
for prediction_json in local_prediction_json:
with open(local_prediction_path + prediction_json,
'r') as f:
this_prediction_load_json = json.load(f)
f.close()
for prekey in this_prediction_load_json.keys():
this_prediction.append(
this_prediction_load_json[prekey])
# get config dict
model_cfg = [
i for i in cfg['models'] if model_abbr_from_cfg(i) == model
][0]
dataset_cfg = [
i for i in cfg['datasets']
if dataset_abbr_from_cfg(i) == dataset
][0]
this_cfg = {'models': model_cfg, 'datasets': dataset_cfg}
# dict combine
data_model_results = {
'predictions': this_prediction,
'results': this_result,
'cfg': this_cfg
}
with open(osp.join(result_path, result_file_name), 'w') as f:
json.dump(data_model_results,
f,
ensure_ascii=False,
indent=4)
f.close()
print('successfully save result of {} with {} to the station'.
format(dataset, model))
return True
def Read_From_Station(cfg, args):
assert args.station_path is not None or 'station_path' in cfg.keys(
) and cfg['station_path'] is not None
if 'station_path' in cfg.keys() and cfg['station_path'] is not None:
station_path = cfg['station_path']
else:
station_path = args.station_path
model_list = [model_abbr_from_cfg(model) for model in cfg['models']]
dataset_list = [
dataset_abbr_from_cfg(dataset) for dataset in cfg['datasets']
]
# model_list = [i['abbr'] for i in cfg['models']]
# dataset_list = [i['abbr'] for i in cfg['datasets']]
existing_results_list = []
for model in model_list:
for dataset in dataset_list:
result_file_path = osp.join(station_path, dataset, model + '.json')
if not osp.exists(result_file_path):
print('do not find result file: {} with {} at station'.format(
model, dataset))
continue
else:
print('find result file: {} with {} at station'.format(
model, dataset))
with open(result_file_path, 'r') as f:
download_json = json.load(f)
f.close()
existing_results_list.append({
'combination': [model, dataset],
'file': download_json
})
# save results to local
result_local_path = osp.join(cfg['work_dir'], 'results')
if not osp.exists(result_local_path):
os.makedirs(result_local_path)
for i in existing_results_list:
this_result = i['file']['results']
this_result_local_path = osp.join(result_local_path,
i['combination'][0])
if not osp.exists(this_result_local_path):
os.makedirs(this_result_local_path)
this_result_local_file_path = osp.join(this_result_local_path,
i['combination'][1] + '.json')
with open(this_result_local_file_path, 'w') as f:
json.dump(this_result, f, ensure_ascii=False, indent=4)
f.close()
return existing_results_list
def find_files_by_regex(directory, pattern):
regex = re.compile(pattern)
matched_files = []
for filename in os.listdir(directory):
if regex.match(filename):
matched_files.append(filename)
return matched_files
def check_filenames(x, filenames):
if not filenames:
return False
single_pattern = re.compile(rf'^{re.escape(x)}\.json$')
numbered_pattern = re.compile(rf'^{re.escape(x)}_(\d+)\.json$')
is_single = all(single_pattern.match(name) for name in filenames)
is_numbered = all(numbered_pattern.match(name) for name in filenames)
if not (is_single or is_numbered):
return False
if is_single:
return len(filenames) == 1
if is_numbered:
numbers = []
for name in filenames:
match = numbered_pattern.match(name)
if match:
numbers.append(int(match.group(1)))
if sorted(numbers) != list(range(len(numbers))):
return False
return True