OpenCompass/opencompass/datasets/natural_question.py
Songyang Zhang c789ce5698
[Fix] the automatically download for several datasets (#1652)
* [Fix] the automatically download for several datasets

* Update

* Update

* Update CI
2024-11-01 15:57:18 +08:00

105 lines
3.8 KiB
Python

import csv
import json
import os.path as osp
from os import environ
from datasets import Dataset, DatasetDict
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
from opencompass.utils import get_data_path
from opencompass.utils.text_postprocessors import general_postprocess
from .base import BaseDataset
@LOAD_DATASET.register_module()
class NaturalQuestionDataset(BaseDataset):
@staticmethod
def load(path: str):
path = get_data_path(path)
dataset = DatasetDict()
for split in ['dev', 'test']:
if environ.get('DATASET_SOURCE') == 'ModelScope':
from modelscope.msdatasets import MsDataset
ms_dataset = MsDataset.load(path, split=split)
raw_data = []
for row in ms_dataset:
question = row['question']
answers = eval(row['answer'])
if split == 'dev':
answers = answers[0]
raw_data.append({'question': question, 'answer': answers})
else:
filename = osp.join(path, f'nq-{split}.qa.csv')
with open(filename, 'r', encoding='utf-8') as f:
reader = csv.reader(f, delimiter='\t')
raw_data = []
for row in reader:
assert len(row) == 2
question = row[0]
answers = eval(row[1])
if split == 'dev':
answers = answers[0]
raw_data.append({
'question': question,
'answer': answers
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
@LOAD_DATASET.register_module()
class NQOpenDataset(BaseDataset):
@staticmethod
def load(path: str):
path = get_data_path(path)
dataset = DatasetDict()
for split in ['validation', 'train']:
filename = osp.join(path, f'nq-open-{split}.jsonl')
raw_data = []
with open(filename, 'r', encoding='utf-8') as f:
for doc in f:
doc = json.loads(doc)
if split == 'train':
doc['answer'] = doc['answer'][0]
raw_data.append(doc)
dataset[split] = Dataset.from_list(raw_data)
return dataset
@ICL_EVALUATORS.register_module()
class NQEvaluator(BaseEvaluator):
def score(self, predictions, references):
if len(predictions) != len(references):
return {
'error': 'predictions and references have different '
'length'
}
processed_predictions = []
for prediction in predictions:
prediction = prediction.strip().split('\n')[0].lower()
if 'answer is' in prediction:
prediction = prediction.split('answer is')[-1]
prediction = general_postprocess(prediction)
processed_predictions.append(prediction)
processed_answers = [[general_postprocess(j).lower() for j in i]
for i in references]
details = []
cnt = 0
for pred, cand_ans in zip(processed_predictions, processed_answers):
detail = {'pred': pred, 'answer': cand_ans, 'correct': False}
# is_correct = any([cand == pred for cand in cand_ans])
is_correct = any([cand in pred for cand in cand_ans])
cnt += int(is_correct)
detail['correct'] = is_correct
details.append(detail)
score = cnt / len(predictions) * 100
return {'score': score, 'details': details}