mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* add ceval, gsm8k modelscope surpport * update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest * update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets * format file * format file * update dataset format * support ms_dataset * udpate dataset for modelscope support * merge myl_dev and update test_ms_dataset * udpate dataset for modelscope support * update readme * update eval_api_zhipu_v2 * remove unused code * add get_data_path function * update readme * remove tydiqa japanese subset * add ceval, gsm8k modelscope surpport * update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest * update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets * format file * format file * update dataset format * support ms_dataset * udpate dataset for modelscope support * merge myl_dev and update test_ms_dataset * update readme * udpate dataset for modelscope support * update eval_api_zhipu_v2 * remove unused code * add get_data_path function * remove tydiqa japanese subset * update util * remove .DS_Store * fix md format * move util into package * update docs/get_started.md * restore eval_api_zhipu_v2.py, add environment setting * Update dataset * Update * Update * Update * Update --------- Co-authored-by: Yun lin <yunlin@U-Q9X2K4QV-1904.local> Co-authored-by: Yunnglin <mao.looper@qq.com> Co-authored-by: Yun lin <yunlin@laptop.local> Co-authored-by: Yunnglin <maoyl@smail.nju.edu.cn> Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
150 lines
6.0 KiB
Python
150 lines
6.0 KiB
Python
import json
|
|
import os.path as osp
|
|
from os import environ
|
|
|
|
from datasets import Dataset
|
|
|
|
from opencompass.registry import LOAD_DATASET
|
|
from opencompass.utils import get_data_path
|
|
|
|
from .base import BaseDataset
|
|
|
|
|
|
@LOAD_DATASET.register_module()
|
|
class ARCDataset(BaseDataset):
|
|
|
|
@staticmethod
|
|
def load(path: str, name: str):
|
|
path = get_data_path(path)
|
|
if environ.get('DATASET_SOURCE') == 'ModelScope':
|
|
from modelscope import MsDataset
|
|
dataset = MsDataset.load(path,
|
|
split='validation',
|
|
subset_name=name)
|
|
rows = []
|
|
for row in dataset:
|
|
answerKey = row['answerKey']
|
|
question = row['question']
|
|
choices = row['choices']
|
|
if len(choices['text']) != 4:
|
|
continue
|
|
labels = row['choices']['label']
|
|
answerKey = 'ABCD'[labels.index(answerKey)]
|
|
|
|
rows.append({
|
|
'question': question,
|
|
'answerKey': answerKey,
|
|
'textA': choices['text'][0],
|
|
'textB': choices['text'][1],
|
|
'textC': choices['text'][2],
|
|
'textD': choices['text'][3],
|
|
})
|
|
else:
|
|
with open(path, 'r', errors='ignore') as in_f:
|
|
rows = []
|
|
for line in in_f:
|
|
item = json.loads(line.strip())
|
|
question = item['question']
|
|
if len(question['choices']) != 4:
|
|
continue
|
|
labels = [c['label'] for c in question['choices']]
|
|
answerKey = 'ABCD'[labels.index(item['answerKey'])]
|
|
rows.append({
|
|
'question': question['stem'],
|
|
'answerKey': answerKey,
|
|
'textA': question['choices'][0]['text'],
|
|
'textB': question['choices'][1]['text'],
|
|
'textC': question['choices'][2]['text'],
|
|
'textD': question['choices'][3]['text'],
|
|
})
|
|
dataset = Dataset.from_list(rows)
|
|
return dataset
|
|
|
|
|
|
class ARCDatasetClean(BaseDataset):
|
|
|
|
# load the contamination annotations of CEval from
|
|
# https://github.com/liyucheng09/Contamination_Detector
|
|
@staticmethod
|
|
def load_contamination_annotations(path, split='val'):
|
|
import requests
|
|
|
|
assert split == 'test', 'We only have test set annotation for ARC'
|
|
if environ.get('DATASET_SOURCE') == 'ModelScope':
|
|
from modelscope.utils.config_ds import MS_DATASETS_CACHE
|
|
annotation_cache_path = osp.join(
|
|
MS_DATASETS_CACHE,
|
|
f'ARC_c_{split}_contamination_annotations.json')
|
|
link_of_annotations = 'https://modelscope.cn/datasets/opencompass/Contamination_Detector/resolve/master/ARC_annotations.json' # noqa
|
|
else:
|
|
annotation_cache_path = osp.join(
|
|
path, f'ARC_c_{split}_contamination_annotations.json')
|
|
link_of_annotations = 'https://github.com/liyucheng09/Contamination_Detector/releases/download/v0.1.1rc/ARC_annotations.json' # noqa
|
|
|
|
if osp.exists(annotation_cache_path):
|
|
with open(annotation_cache_path, 'r') as f:
|
|
annotations = json.load(f)
|
|
return annotations
|
|
|
|
annotations = json.loads(requests.get(link_of_annotations).text)
|
|
with open(annotation_cache_path, 'w') as f:
|
|
json.dump(annotations, f)
|
|
return annotations
|
|
|
|
@staticmethod
|
|
def load(path: str, name: str):
|
|
path = get_data_path(path)
|
|
annotations = ARCDatasetClean.load_contamination_annotations(
|
|
osp.dirname(path), 'test')
|
|
if environ.get('DATASET_SOURCE') == 'ModelScope':
|
|
from modelscope import MsDataset
|
|
dataset = MsDataset.load(path, split='test', subset_name=name)
|
|
rows = []
|
|
for row in dataset:
|
|
answerKey = row['answerKey']
|
|
question = row['question']
|
|
choices = row['choices']
|
|
if len(choices['text']) != 4:
|
|
continue
|
|
labels = row['choices']['label']
|
|
answerKey = 'ABCD'[labels.index(answerKey)]
|
|
id_ = row['id']
|
|
if id_ in annotations:
|
|
is_clean = annotations[id_][0]
|
|
else:
|
|
is_clean = 'not labeled'
|
|
rows.append({
|
|
'question': question,
|
|
'answerKey': answerKey,
|
|
'textA': choices['text'][0],
|
|
'textB': choices['text'][1],
|
|
'textC': choices['text'][2],
|
|
'textD': choices['text'][3],
|
|
'is_clean': is_clean,
|
|
})
|
|
else:
|
|
with open(path, 'r', errors='ignore') as in_f:
|
|
rows = []
|
|
for line in in_f:
|
|
item = json.loads(line.strip())
|
|
id_ = item['id']
|
|
question = item['question']
|
|
if id_ in annotations:
|
|
is_clean = annotations[id_][0]
|
|
else:
|
|
is_clean = 'not labeled'
|
|
if len(question['choices']) != 4:
|
|
continue
|
|
labels = [c['label'] for c in question['choices']]
|
|
answerKey = 'ABCD'[labels.index(item['answerKey'])]
|
|
rows.append({
|
|
'question': question['stem'],
|
|
'answerKey': answerKey,
|
|
'textA': question['choices'][0]['text'],
|
|
'textB': question['choices'][1]['text'],
|
|
'textC': question['choices'][2]['text'],
|
|
'textD': question['choices'][3]['text'],
|
|
'is_clean': is_clean,
|
|
})
|
|
return Dataset.from_list(rows)
|