OpenCompass/opencompass/configs/datasets/ruler/ruler_16k_gen.py
Chang Lan d70100cdf2
[Update] Customizable tokenizer for RULER (#1731)
* Customizable tokenizer for RULER

* Relax requirements
2024-12-19 18:02:11 +08:00

33 lines
1.1 KiB
Python

import os
from mmengine.config import read_base
with read_base():
from .ruler_cwe_gen import cwe_datasets as cwe # CWE
from .ruler_fwe_gen import fwe_datasets as fwe # FWE
from .ruler_niah_gen import niah_datasets as niah # Niah
from .ruler_qa_gen import qa_datasets as qa # QA
from .ruler_vt_gen import vt_datasets as vt # VT
import_ds = sum((cwe, fwe, niah, qa, vt), [])
# Evaluation config
NUM_SAMPLES = 100 # Change to the number of samples you need
tokenizer_model = os.environ.get('TOKENIZER_MODEL', 'gpt-4')
# Change the context lengths to be tested
max_seq_lens = [1024 * 16]
abbr_suffixs = ['16k']
ruler_datasets = []
# Different seq length
for max_seq_len, abbr_suffix in zip(max_seq_lens, abbr_suffixs):
for dataset in import_ds:
tmp_dataset = dataset.deepcopy()
tmp_dataset['abbr'] = tmp_dataset['abbr'] + '_' + abbr_suffix
tmp_dataset['num_samples'] = NUM_SAMPLES
tmp_dataset['max_seq_length'] = max_seq_len
tmp_dataset['tokenizer_model'] = tokenizer_model
ruler_datasets.append(tmp_dataset)