OpenCompass/opencompass/datasets/gpqa.py
Songyang Zhang fb43dd1906
[Update] Update Skywork/Qwen-QwQ (#1728)
* Update JuderBench

* Support O1-style Prompts

* Update Code

* Update OpenAI

* Update BigCodeBench

* Update BigCodeBench

* Update BigCodeBench

* Update BigCodeBench

* Update BigCodeBench

* Update
2024-12-05 19:30:43 +08:00

116 lines
3.8 KiB
Python

import csv
import os
import random
import re
from datasets import Dataset
from opencompass.openicl import BaseEvaluator
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS
from opencompass.utils import get_data_path
from .base import BaseDataset
@LOAD_DATASET.register_module()
class GPQADataset(BaseDataset):
@staticmethod
def load(path: str, name: str, **kwargs):
path = get_data_path(path, local_mode=True)
cnt = 0
data = []
with open(os.path.join(path, name), 'r', encoding='utf-8') as f:
reader = csv.reader(f, delimiter=',')
for row in reader:
if row[7] == 'Question':
continue
cnt = cnt + 1
question = row[7]
# 第一个是正确选项
options = [row[8], row[9], row[10], row[11]]
shuffle_patterns = ['ABCD', 'BCDA', 'CDAB', 'DABC'] # 更新选项顺序
c = shuffle_patterns[cnt % 4]
line = {'question': question}
ground_truth = options[0]
for i in range(4):
line['ABCD'[i]] = options[ord(c[i]) - ord('A')]
for i in range(4):
if line['ABCD'[i]] == ground_truth:
line['answer'] = 'ABCD'[i]
break
data.append(line)
dataset = Dataset.from_list(data)
return dataset
class GPQAEvaluator(BaseEvaluator):
def score(self, predictions, references):
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
correct = 0
count = 0
details = []
for i, j in zip(predictions, references):
detail = {'pred': i, 'answer': j, 'correct': False}
count += 1
if i == j:
correct += 1
detail['correct'] = True
details.append(detail)
result = {'accuracy': 100 * correct / count, 'details': details}
return result
@LOAD_DATASET.register_module()
class GPQASimpleEvalDataset(BaseDataset):
"""GPQA dataset compatible with simple-eval."""
@staticmethod
def load(path: str, name: str):
path = get_data_path(path, local_mode=True)
n_repeats = 4
data = []
with open(os.path.join(path, name), 'r', encoding='utf-8') as f:
reader = csv.reader(f, delimiter=',')
for row in reader:
if row[7] == 'Question':
continue
question = row[7]
# 第一个是正确选项
options = [row[8], row[9], row[10], row[11]]
line = {'question': question}
line['answer'] = 'A'
line['options'] = options
data.append(line)
data_list = data * n_repeats
rng = random.Random(0)
data_list = [
data | {
'permutation': rng.sample(range(4), 4)
} for data in data_list
]
for entry in data_list:
options = entry['options']
correct_options = [options[i] for i in entry['permutation']]
for i in range(4):
entry['ABCD'[i]] = correct_options[i]
correct_index = entry['permutation'].index(0)
correct_answer = 'ABCD'[correct_index]
entry['options'] = correct_options
entry['answer'] = correct_answer
dataset = Dataset.from_list(data_list)
return dataset
@TEXT_POSTPROCESSORS.register_module()
def GPQA_Simple_Eval_postprocess(text: str) -> str:
ANSWER_PATTERN = r'(?i)ANSWER\s*:\s*([A-D])'
match = re.search(ANSWER_PATTERN, text)
if match:
return match.group(1)
return None