OpenCompass/opencompass/datasets/calm/data_processing/generate_questions.py
Peng Bo 07c96ac659
Calm dataset (#1385)
* Add CALM Dataset
2024-08-01 10:03:21 +08:00

193 lines
6.8 KiB
Python

# flake8: noqa: E501
import importlib
from pathlib import Path
from ..utils.load_items import load_query_instances
def get_get_prompt_func(task):
"""Returns the appropriate prompt generation function based on the given
task.
Args:
task (str): The name of the task for which the prompt function is required.
Returns:
function: The prompt generation function for the specified task.
Raises:
NotImplementedError: If no prompt function is found for the given task.
"""
task_to_module_map = {
# association/
# correlation/
'CORR-B_correlation_CN': 'CORR-B_correlation',
'CORR-B_correlation_EN': 'CORR-B_correlation',
# explaining_away_effect/
'EAE-B_exp-away_CN': 'EAE-B_exp-away',
'EAE-B_exp-away_EN': 'EAE-B_exp-away',
# causal_discovery/
# abstract_reasoning/
'AR-B_CaLM-AR_CN': 'AR-B_CaLM-AR',
'AR-B_CaLM-AR_EN': 'AR-B_CaLM-AR',
# causal_attribution/
'CA-B_FA_CN': 'CA-B_FA',
'CA-B_FA_EN': 'CA-B_FA',
'CA-B_FP_CN': 'CA-B_FP',
'CA-B_FP_EN': 'CA-B_FP',
# event_causality_identification/
'ECI-B_CTB_CN': 'ECI-B_CTB',
'ECI-B_CTB_EN': 'ECI-B_CTB',
'ECI-B_ESC_CN': 'ECI-B_ESC',
'ECI-B_ESC_EN': 'ECI-B_ESC',
'ECI-B_MAVEN-ERE_CN': 'ECI-B_MAVEN-ERE',
'ECI-B_MAVEN-ERE_EN': 'ECI-B_MAVEN-ERE',
# pairwise_causal_discovery/
'PCD-B_COPA_CN': 'PCD-B_COPA',
'PCD-B_COPA_EN': 'PCD-B_COPA',
'PCD-B_E-CARE_CN': 'PCD-B_E-CARE',
'PCD-B_E-CARE_EN': 'PCD-B_E-CARE',
'PCD-C_COPA_CN': 'PCD-C_COPA',
'PCD-C_COPA_EN': 'PCD-C_COPA',
'PCD-C_E-CARE_CN': 'PCD-C_E-CARE',
'PCD-C_E-CARE_EN': 'PCD-C_E-CARE',
# counterfactual/
# actual_causality/
'AC-B_causal_judgement_CN': 'AC-B_causal_judgement',
'AC-B_causal_judgement_EN': 'AC-B_causal_judgement',
# causal_explanation_generation/
'CEG-O_E-CARE_CN': 'CEG-O_E-CARE',
'CEG-O_E-CARE_EN': 'CEG-O_E-CARE',
# counterfactual_reasoning/
'CR-B_det-counterfactual_CN': 'CR-B_det-counterfactual',
'CR-B_det-counterfactual_EN': 'CR-B_det-counterfactual',
'CR-C_CRASS_CN': 'CR-C_CRASS',
'CR-C_CRASS_EN': 'CR-C_CRASS',
# effect_of_the_treatment_on_the_treated/
'ETT-B_ETT-natural_CN': 'ETT',
'ETT-B_ETT-natural_EN': 'ETT',
'ETT-P_ETT-basic_CN': 'ETT',
'ETT-P_ETT-basic_EN': 'ETT',
'ETT-P_ETT-hard_CN': 'ETT',
'ETT-P_ETT-hard_EN': 'ETT',
# natural_direct_effect/
'NDE-B_NDE-natural_CN': 'NDE',
'NDE-B_NDE-natural_EN': 'NDE',
'NDE-P_NDE-basic_CN': 'NDE',
'NDE-P_NDE-basic_EN': 'NDE',
'NDE-P_NDE-hard_CN': 'NDE',
'NDE-P_NDE-hard_EN': 'NDE',
# natural_indirect_effect/
'NIE-B_NIE-natural_CN': 'NIE',
'NIE-B_NIE-natural_EN': 'NIE',
'NIE-P_NIE-basic_CN': 'NIE',
'NIE-P_NIE-basic_EN': 'NIE',
'NIE-P_NIE-hard_CN': 'NIE',
'NIE-P_NIE-hard_EN': 'NIE',
# probability_of_necessity/
'PN-P_PN-basic_CN': 'PN',
'PN-P_PN-basic_EN': 'PN',
'PN-P_PN-hard_CN': 'PN',
'PN-P_PN-hard_EN': 'PN',
# probability_of_sufficiency/
'PS-P_PS-basic_CN': 'PS',
'PS-P_PS-basic_EN': 'PS',
'PS-P_PS-hard_CN': 'PS',
'PS-P_PS-hard_EN': 'PS',
# intervention/
# average_treatment_effect/
'ATE-B_ATE-natural_CN': 'ATE',
'ATE-B_ATE-natural_EN': 'ATE',
'ATE-P_ATE-basic_CN': 'ATE',
'ATE-P_ATE-basic_EN': 'ATE',
'ATE-P_ATE-hard_CN': 'ATE',
'ATE-P_ATE-hard_EN': 'ATE',
# backdoor_adjustment_set/
'BAS-B_backadj_CN': 'BAS-B_backadj',
'BAS-B_backadj_EN': 'BAS-B_backadj',
'BAS-C_max-BAS_CN': 'BAS-C_max-BAS',
'BAS-C_max-BAS_EN': 'BAS-C_max-BAS',
'BAS-C_min-BAS_CN': 'BAS-C_min-BAS',
'BAS-C_min-BAS_EN': 'BAS-C_min-BAS',
'BAS-C_mix-BAS_CN': 'BAS-C_mix-BAS',
'BAS-C_mix-BAS_EN': 'BAS-C_mix-BAS',
# causal_effect_identification/
'CEI-B_0.2-UC_CN': 'CEI-B',
'CEI-B_0.2-UC_EN': 'CEI-B',
'CEI-B_0.4-UC_CN': 'CEI-B',
'CEI-B_0.4-UC_EN': 'CEI-B',
'CEI-B_0.6-UC_CN': 'CEI-B',
'CEI-B_0.6-UC_EN': 'CEI-B',
'CEI-B_0.8-UC_CN': 'CEI-B',
'CEI-B_0.8-UC_EN': 'CEI-B',
# collider_bias/
'CB-B_collider-bias_CN': 'CB-B_collider-bias',
'CB-B_collider-bias_EN': 'CB-B_collider-bias',
# controlled_direct_effect/
'CDE-B_CDE-natural_CN': 'CDE',
'CDE-B_CDE-natural_EN': 'CDE',
'CDE-P_CDE-basic_CN': 'CDE',
'CDE-P_CDE-basic_EN': 'CDE',
'CDE-P_CDE-hard_CN': 'CDE',
'CDE-P_CDE-hard_EN': 'CDE',
# frontdoor_adjustment_set/
'FAS-C_FAS_CN': 'FAS-C_FAS',
'FAS-C_FAS_EN': 'FAS-C_FAS',
# instrumental_variable/
'IV-C_CaLM-IV_CN': 'IV-C_CaLM-IV',
'IV-C_CaLM-IV_EN': 'IV-C_CaLM-IV',
}
module_name = task_to_module_map.get(task)
if module_name:
module = importlib.import_module(
'opencompass.datasets.calm.data_processing.prompt.' + module_name)
return module.get_prompt
else:
raise NotImplementedError(
f'No get_prompt function found for task {task}.')
def generate_question_list(dataset_path, prompt_style):
"""Generates a list of questions from the dataset based on the specified
prompt style.
Args:
dataset_path (str): The path to the dataset JSON file.
prompt_style (str): The style of prompt to be used for generating questions.
Returns:
list: A list of question dictionaries, each containing an item from the dataset along with its corresponding question.
Raises:
AssertionError: If the task name and prompt style do not match the expected language suffix.
"""
# Extract task name from dataset path
dataset_path = Path(dataset_path)
task_name = dataset_path.name[:-len('.json')]
# Validate prompt style based on task language
if task_name.endswith('CN'):
assert prompt_style.endswith('-CN')
else:
assert not prompt_style.endswith('-CN')
# Get prompt generation function based on task
get_prompt_func = get_get_prompt_func(task=task_name)
# Load items from dataset
item_list = load_query_instances(dataset_path)
question_list = []
# Generate questions for each item in the dataset
for idx, item in enumerate(item_list):
question = get_prompt_func(task_name=task_name,
prompt_style=prompt_style,
item=item)
question_list.append({
'question': question,
'gt_item': item,
})
return question_list