mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* add ceval, gsm8k modelscope surpport * update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest * update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets * format file * format file * update dataset format * support ms_dataset * udpate dataset for modelscope support * merge myl_dev and update test_ms_dataset * udpate dataset for modelscope support * update readme * update eval_api_zhipu_v2 * remove unused code * add get_data_path function * update readme * remove tydiqa japanese subset * add ceval, gsm8k modelscope surpport * update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest * update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets * format file * format file * update dataset format * support ms_dataset * udpate dataset for modelscope support * merge myl_dev and update test_ms_dataset * update readme * udpate dataset for modelscope support * update eval_api_zhipu_v2 * remove unused code * add get_data_path function * remove tydiqa japanese subset * update util * remove .DS_Store * fix md format * move util into package * update docs/get_started.md * restore eval_api_zhipu_v2.py, add environment setting * Update dataset * Update * Update * Update * Update --------- Co-authored-by: Yun lin <yunlin@U-Q9X2K4QV-1904.local> Co-authored-by: Yunnglin <mao.looper@qq.com> Co-authored-by: Yun lin <yunlin@laptop.local> Co-authored-by: Yunnglin <maoyl@smail.nju.edu.cn> Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
157 lines
6.2 KiB
Python
157 lines
6.2 KiB
Python
import ast
|
|
import json
|
|
|
|
try:
|
|
import networkx as nx
|
|
except ImportError:
|
|
nx = None
|
|
|
|
import pandas as pd
|
|
from datasets import Dataset
|
|
|
|
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
|
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
|
|
from opencompass.utils import get_data_path
|
|
|
|
from ..base import BaseDataset
|
|
from .prompts import tsp_dPrompts
|
|
|
|
|
|
def q2text(adj_matrix, distance_limit, p=tsp_dPrompts):
|
|
total_cities = adj_matrix.shape[0] # exclude the last row
|
|
prompt_text = p['Intro'] + '\n' + \
|
|
p['Initial_question'].format(total_cities=total_cities, distance_limit=distance_limit) + '\n' + \
|
|
p['Output_content'] + '\n' + \
|
|
p['Output_format'] + '\n' + \
|
|
'The distances between cities are below: \n'
|
|
|
|
for i in range(adj_matrix.shape[0]):
|
|
for j in range(adj_matrix.shape[1]):
|
|
if i < j: # only use the upper triangle
|
|
this_line = 'The distance between City {} and City {} is {}.'.format(i, j, adj_matrix[i, j])
|
|
prompt_text += this_line + '\n'
|
|
return prompt_text
|
|
|
|
|
|
@LOAD_DATASET.register_module(force=True)
|
|
class CMP_TSP_D_Dataset(BaseDataset):
|
|
|
|
@staticmethod
|
|
def load(path: str):
|
|
path = get_data_path(path, local_mode=True)
|
|
raw_data = []
|
|
data_path = path
|
|
all_data = []
|
|
for level in range(10):
|
|
for file_num in range(10):
|
|
df = pd.read_csv(data_path + 'decision_data_TSP_level_{}_instance_{}.csv'.format(level, file_num + 1),
|
|
header=None,
|
|
index_col=False)
|
|
all_data.append((level + 1, df))
|
|
|
|
for (level, q) in all_data:
|
|
threshold = q.iloc[-1, 0] # therashold is the last row
|
|
distance_matrix = q.iloc[:
|
|
-1].values # distance matrix is the rest of the rows
|
|
prompt = q2text(distance_matrix, threshold)
|
|
raw_data.append({
|
|
'prompt': prompt,
|
|
'q': str(level) + '####\n' + json.dumps(q.to_json()),
|
|
'level': level
|
|
})
|
|
dataset = Dataset.from_list(raw_data)
|
|
return dataset
|
|
|
|
|
|
@ICL_EVALUATORS.register_module(force=True)
|
|
class CMP_TSP_D_Evaluator(BaseEvaluator):
|
|
|
|
def score(self, predictions, references):
|
|
assert len(predictions) == len(references)
|
|
|
|
result = {'pass': 0, 'fail': 0}
|
|
details = {}
|
|
tsp_d_Results = []
|
|
for index, (q, llm_string) in enumerate(zip(references, predictions)):
|
|
output_dict = {}
|
|
output, reasoning = self.parse_xml_to_dict(llm_string)
|
|
level = int(q.split('####\n')[0])
|
|
q = json.loads(q.split('####\n')[-1])
|
|
q = pd.DataFrame(eval(q))
|
|
threshold = q.iloc[-1, 0] # therashold is the last row
|
|
distance_matrix = q.iloc[:-1].values # distance matrix is the rest of the rows
|
|
output_dict['output'] = output
|
|
try:
|
|
output_dict['correctness'], _ = self.tsp_decision_check(distance_matrix, threshold, output)
|
|
except Exception as e:
|
|
print(f'Check failed: {e}')
|
|
output_dict['correctness'] = False
|
|
output_dict['reasoning'] = reasoning
|
|
output_dict['level'] = level
|
|
if output_dict:
|
|
tsp_d_Results.append(output_dict)
|
|
if output_dict['correctness']:
|
|
r = 'pass'
|
|
else:
|
|
r = 'fail'
|
|
|
|
result[r] += level
|
|
details[str(index)] = {'q': q, 'output': output, 'result': r}
|
|
|
|
result['score'] = result['pass'] / (result['pass'] + result['fail']) * 100
|
|
result['details'] = details
|
|
final_result = {'Weighted Accuracy': result['score']}
|
|
return final_result
|
|
|
|
def parse_xml_to_dict(self, xml_string):
|
|
try:
|
|
assert '<final_answer>' in xml_string
|
|
assert '</final_answer>' in xml_string
|
|
assert '<reasoning>' in xml_string
|
|
assert '</reasoning>' in xml_string
|
|
final_answer_start = xml_string.index('<final_answer>') + len('<final_answer>')
|
|
final_answer_end = xml_string.index('</final_answer>')
|
|
reasoning_start = xml_string.index('<reasoning>') + len('<reasoning>')
|
|
reasoning_end = xml_string.index('</reasoning>')
|
|
final_answer_element = xml_string[final_answer_start:final_answer_end].rstrip().strip().rstrip()
|
|
reasoning_element = xml_string[reasoning_start:reasoning_end].rstrip().strip().rstrip()
|
|
try:
|
|
final_answer_element = ast.literal_eval(final_answer_element)
|
|
except Exception:
|
|
final_answer_element = ''
|
|
except Exception:
|
|
final_answer_element = ''
|
|
reasoning_element = ''
|
|
|
|
return final_answer_element, reasoning_element
|
|
|
|
def tsp_approx(self, distance_matrix):
|
|
"""Returns an approximate solution to the TSP problem.
|
|
|
|
:param distance_matrix: A 2D numpy array representing the distance matrix.
|
|
:return: A list of the cities in the order they were visited.
|
|
"""
|
|
G = nx.from_numpy_array(distance_matrix)
|
|
return nx.approximation.traveling_salesman_problem(G)
|
|
|
|
def tsp_decision_check(self, distance_matrix, threshold, tour):
|
|
"""Checks if a given TSP tour is valid and within the threshold
|
|
distance.
|
|
|
|
:param distance_matrix: A 2D numpy array representing the distance matrix.
|
|
:param threshold: The maximum distance allowed.
|
|
:param tour: A dictionary containing the feasibility.
|
|
"""
|
|
try:
|
|
is_feasible = tour.get('Feasible', 'no').lower() == 'yes'
|
|
except Exception:
|
|
return False, 'Output format incorrect'
|
|
|
|
# Calculate the approxed distance of the tour
|
|
tours = self.tsp_approx(distance_matrix)
|
|
tour_distance = sum(distance_matrix[tours[i], tours[i + 1]] for i in range(len(tours) - 1)) + distance_matrix[tours[-1], tours[0]]
|
|
|
|
if is_feasible != (tour_distance <= threshold):
|
|
return False, f'Feasibility mismatch: {is_feasible} vs {tour_distance} > {threshold}'
|
|
return True, 'Feasible: {} <= {}'.format(tour_distance, threshold)
|