OpenCompass/examples/eval_qwen3.py
Songyang Zhang aa2b89b6f8
[Update] Add CascadeEvaluator with Data Replica (#2022)
* Update CascadeEvaluator

* Update CascadeEvaluator

* Update CascadeEvaluator

* Update Config

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update

* Update
2025-05-20 16:46:55 +08:00

142 lines
4.7 KiB
Python

import os.path as osp
from opencompass.models import OpenAISDK
from mmengine.config import read_base
from opencompass.utils.text_postprocessors import extract_non_reasoning_content
from opencompass.runners import LocalRunner
from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask
with read_base():
from opencompass.configs.datasets.aime2024.aime2024_cascade_eval_gen_5e9f4f import aime2024_datasets
from opencompass.configs.datasets.aime2025.aime2025_cascade_eval_gen_5e9f4f import aime2025_datasets
from opencompass.configs.datasets.math.math_500_cascade_eval_gen_6ff468 import math_datasets
#######################################################################
# PART 0 Meta Info #
#######################################################################
api_meta_template = dict(round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
)
judge_cfg = dict(
abbr='qwen2-5-32B-Instruct',
type=OpenAISDK,
path='Qwen/Qwen2.5-32B-Instruct',
key='sk-1234',
openai_api_base=[
'http://x.x.x.x:4000/v1',
],
meta_template=api_meta_template,
query_per_second=8,
batch_size=256,
temperature=0.001,
# max_completion_tokens=32768,
tokenizer_path='gpt-4o-2024-05-13',
# verbose=True,
max_out_len=16384,
max_seq_len=32768,
# max_seq_len=49152,
mode='mid',
retry=10
)
#######################################################################
# PART 1 Datasets List #
#######################################################################
repeated_info = [
(math_datasets, 4),
(aime2024_datasets, 32),
(aime2025_datasets, 32),
]
for datasets_, num in repeated_info:
for dataset_ in datasets_:
dataset_['n'] = num
datasets = sum(
(v for k, v in locals().items() if k.endswith('_datasets')),
[],
)
for item in datasets:
item['infer_cfg']['inferencer']['max_out_len'] = 32768
try:
if 'judge_cfg' in item['eval_cfg']['evaluator']:
item['eval_cfg']['evaluator']['judge_cfg'] = judge_cfg
elif'judge_cfg' in item['eval_cfg']['evaluator']['llm_evaluator']:
item['eval_cfg']['evaluator']['llm_evaluator']['judge_cfg'] = judge_cfg
except:
pass
#######################################################################
# PART 2 Dataset Summarizer #
#######################################################################
summarizer = dict(
dataset_abbrs=[
'MATH',
['math_prm800k_500', 'accuracy (4 runs average)'],
['aime2024', 'accuracy (32 runs average)'],
['aime2025', 'accuracy (32 runs average)'],
['livemathbench_hard', 'naive_average'],
['OlympiadBenchMath', 'accuracy'],
['olymmath', 'naive_average'],
],
summary_groups = sum(
[v for k, v in locals().items() if k.endswith('_summary_groups')], []
),
)
#######################################################################
# PART 3 Models List #
#######################################################################
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
models += [
dict(
abbr='Qwen_Qwen3-235B-A22B',
type=OpenAISDK,
path='Qwen/Qwen3-235B-A22B',
key='sk-admin',
openai_api_base=[
'http://106.15.231.215:40007/v1/',
],
meta_template=dict(
# begin=dict(role='SYSTEM', api_role='SYSTEM', prompt=''),
round=[
dict(role='HUMAN', api_role='HUMAN'),
# XXX: all system roles are mapped to human in purpose
dict(role='BOT', api_role='BOT', generate=True),
]
),
query_per_second=16,
batch_size=128,
# batch_size=1,
temperature=0.6,
# max_completion_tokens=32768,
tokenizer_path='gpt-4',
# verbose=True,
max_out_len=32768,
max_seq_len=32768,
pred_postprocessor=dict(type=extract_non_reasoning_content)
),
]
infer = dict(
partitioner=dict(type=NumWorkerPartitioner, num_worker=8),
runner=dict(type=LocalRunner, task=dict(type=OpenICLInferTask)),
)
eval = dict(
partitioner=dict(type=NaivePartitioner, n=8),
runner=dict(type=LocalRunner, task=dict(type=OpenICLEvalTask)),
)
base_exp_dir = 'outputs/qwen3_reasoning'
work_dir = osp.join(base_exp_dir, 'chat_objective')