OpenCompass/examples/eval_mathbench.py
Linchen Xiao a6193b4c02
[Refactor] Code refactoarization (#1831)
* Update

* fix lint

* update

* fix lint
2025-01-20 19:17:38 +08:00

42 lines
1.6 KiB
Python

from mmengine.config import read_base
with read_base():
# Import models
# Import datasets
from opencompass.configs.datasets.MathBench.mathbench_gen import \
mathbench_datasets
from opencompass.configs.models.hf_internlm.hf_internlm2_chat_7b import \
models as internlm2_chat_7b_model
from opencompass.configs.models.hf_llama.hf_llama3_8b_instruct import \
models as llama3_8b_instruct_model
# Import summarizers for display results
from opencompass.configs.summarizers.groups.mathbench_v1_2024 import \
summarizer # Grouped results for MathBench-A and MathBench-T separately
# from opencompass.configs.summarizers.mathbench_v1 import summarizer # Detailed results for every sub-dataset
# from opencompass.configs.summarizers.groups.mathbench_v1_2024_lang import summarizer # Grouped results for bilingual results
datasets = sum([v for k, v in locals().items() if k.endswith('_datasets')], [])
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLEvalTask, OpenICLInferTask
eval = dict(
partitioner=dict(type=NaivePartitioner, n=8),
runner=dict(type=LocalRunner,
max_num_workers=256,
task=dict(type=OpenICLEvalTask)),
)
infer = dict(
partitioner=dict(type=NumWorkerPartitioner, num_worker=4),
runner=dict(type=LocalRunner,
max_num_workers=256,
task=dict(type=OpenICLInferTask)),
)
work_dir = './outputs/mathbench_results'