mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* [Feat] support adv_glue dataset for adversarial robustness * reorg files * minor fix * minor fix * support prompt bench demo * minor fix * minor fix * minor fix * minor fix * minor fix * minor fix * minor fix * minor fix
109 lines
4.6 KiB
Markdown
109 lines
4.6 KiB
Markdown
# 提示词攻击
|
||
|
||
OpenCompass 支持[PromptBench](https://github.com/microsoft/promptbench)的提示词攻击。其主要想法是评估提示指令的鲁棒性,也就是说,当攻击或修改提示以指导任务时,希望该任务能尽可能表现的像像原始任务一样好。
|
||
|
||
## 环境安装
|
||
|
||
提示词攻击需要依赖 `PromptBench` 中的组件,所以需要先配置好环境。
|
||
|
||
```shell
|
||
git clone https://github.com/microsoft/promptbench.git
|
||
pip install textattack==0.3.8
|
||
export PYTHONPATH=$PYTHONPATH:promptbench/
|
||
```
|
||
|
||
## 如何攻击
|
||
|
||
### 增加数据集配置文件
|
||
|
||
我们将使用GLUE-wnli数据集作为示例,大部分配置设置可以参考[config.md](../user_guides/config.md)获取帮助。
|
||
|
||
首先,我们需要支持基本的数据集配置,你可以在`configs`中找到现有的配置文件,或者根据[new-dataset](./new_dataset.md)支持你自己的配置。
|
||
|
||
以下面的`infer_cfg`为例,我们需要定义提示模板。`adv_prompt`是实验中要被攻击的基本提示占位符。`sentence1`和`sentence2`是此数据集的输入。攻击只会修改`adv_prompt`字段。
|
||
|
||
然后,我们应该使用`AttackInferencer`与`original_prompt_list`和`adv_key`告诉推理器在哪里攻击和攻击什么文本。
|
||
|
||
更多详细信息可以参考`configs/datasets/promptbench/promptbench_wnli_gen_50662f.py`配置文件。
|
||
|
||
```python
|
||
original_prompt_list = [
|
||
'Are the following two sentences entailment or not_entailment? Answer me with "A. entailment" or "B. not_entailment", just one word. ',
|
||
"Does the relationship between the given sentences represent entailment or not_entailment? Respond with 'A. entailment' or 'B. not_entailment'.",
|
||
...,
|
||
]
|
||
|
||
wnli_infer_cfg = dict(
|
||
prompt_template=dict(
|
||
type=PromptTemplate,
|
||
template=dict(round=[
|
||
dict(
|
||
role="HUMAN",
|
||
prompt="""{adv_prompt}
|
||
Sentence 1: {sentence1}
|
||
Sentence 2: {sentence2}
|
||
Answer:"""),
|
||
]),
|
||
),
|
||
retriever=dict(type=ZeroRetriever),
|
||
inferencer=dict(
|
||
type=AttackInferencer,
|
||
original_prompt_list=original_prompt_list,
|
||
adv_key='adv_prompt'))
|
||
```
|
||
|
||
### Add a eval config
|
||
|
||
我们应该在此处使用 `OpenICLAttackTask` 来进行攻击任务。还应该使用 `NaivePartitioner`,因为攻击实验将重复运行整个数据集近百次以搜索最佳攻击,为方便起见我们不希望拆分数据集。
|
||
|
||
```note
|
||
由于上述提到的重复搜索,请选择小型数据集(样本少于1000)进行攻击,否则时间成本将非常大。
|
||
```
|
||
|
||
在 `attack` 配置中还有其他几个选项:
|
||
|
||
- `attack`:攻击类型,可用选项包括`textfooler`, `textbugger`, `deepwordbug`, `bertattack`, `checklist`, `stresstest`;
|
||
- `query_budget`:查询次数的上界,即运行数据集的总次数;
|
||
- `prompt_topk`:要攻击的前k个提示的数量。在大多数情况下,原始提示列表大于10,运行整个集合是耗时的。
|
||
|
||
```python
|
||
# Please run whole dataset at a time, aka use `NaivePartitioner` only
|
||
# Please use `OpenICLAttackTask` if want to perform attack experiment
|
||
infer = dict(
|
||
partitioner=dict(type=NaivePartitioner),
|
||
runner=dict(
|
||
type=SlurmRunner,
|
||
max_num_workers=8,
|
||
task=dict(type=OpenICLAttackTask),
|
||
retry=0),
|
||
)
|
||
|
||
attack = dict(
|
||
attack='textfooler',
|
||
query_budget=100,
|
||
prompt_topk=2,
|
||
)
|
||
```
|
||
|
||
### 运行试验
|
||
|
||
请当运行攻击实验的时候请使用 `--mode infer` 选项,并需要指定`PYTHONPATH`。
|
||
|
||
```shell
|
||
python run.py configs/eval_attack.py --mode infer
|
||
```
|
||
|
||
所有结果都将保存在名为“attack”的文件夹中。
|
||
内容包括原始提示的准确性和受到攻击的提示的准确性,以及前k个提示下降的准确性,例如:
|
||
|
||
```
|
||
Prompt: Assess the connection between the following sentences and classify it as 'A. entailment' or 'B. not_entailment'., acc: 59.15%
|
||
Prompt: Does the relationship between the given sentences represent entailment or not_entailment? Respond with 'A. entailment' or 'B. not_entailment'., acc: 57.75%
|
||
Prompt: Analyze the two provided sentences and decide if their relationship is 'A. entailment' or 'B. not_entailment'., acc: 56.34%
|
||
Prompt: Identify whether the given pair of sentences demonstrates entailment or not_entailment. Answer with 'A. entailment' or 'B. not_entailment'., acc: 54.93%
|
||
...
|
||
Original prompt: Assess the connection between the following sentences and classify it as 'A. entailment' or 'B. not_entailment'.
|
||
Attacked prompt: b"Assess the attach between the following sentences and sorted it as 'A. entailment' or 'B. not_entailment'."
|
||
Original acc: 59.15%, attacked acc: 40.85%, dropped acc: 18.31%
|
||
```
|