OpenCompass/opencompass/datasets/OpenHuEval/HuMatchingFIB.py
2025-01-26 13:48:35 +08:00

122 lines
3.9 KiB
Python

import json
import os
import re
from datasets import Dataset, DatasetDict
from opencompass.openicl.icl_evaluator import BaseEvaluator
from ..base import BaseDataset
class HuMatchingFIBDataset(BaseDataset):
@staticmethod
def load(filepath):
assert os.path.isfile(filepath)
assert filepath.endswith('.jsonl')
dataset = DatasetDict()
f = open(filepath, 'r', encoding='utf-8')
lines = f.readlines()
objs = []
for line in lines:
obj = json.loads(line)
objs.append(obj)
out_dict_list = []
for obj in objs:
question = dict(q_main=obj['q_main'], options=obj['options'])
hu_specific_dim = obj['hu_specific_label_question']
tmp = obj
new_obj = dict(question=question,
hu_specific_dim=hu_specific_dim,
reference=tmp)
out_dict_list.append(new_obj)
dataset = Dataset.from_list(out_dict_list)
return dataset
class HuMatchingFIBEvaluator(BaseEvaluator):
"""
ref: opencompass.openicl.icl_evaluator.AccwithDetailsEvaluator
"""
def score(self, predictions, references, origin_prompt) -> dict:
if len(predictions) != len(references):
return {'error': 'preds and refers have different length.'}
details = {}
blank_correct, blank_total = 0, 0
question_correct, question_total = 0, 0
for idx, (pred, refer, prompt) in enumerate(
zip(predictions, references, origin_prompt)):
std_ans = refer['std_ans']
model_ans = []
pred = pred.strip()
match = re.search(r'\{.*?\}', pred, re.DOTALL)
if match:
json_str = match.group(0)
else:
blank_total += len(std_ans)
question_total += 1
details[idx] = {
'detail': refer,
'model_ans': model_ans,
'prompt': prompt,
'raw_pred': pred,
}
continue
json_str = json_str.strip()
json_str = json_str.replace('\\xa0', '')
formatted_json_str = json_str
to_end_flag = False
if isinstance(formatted_json_str, str):
try:
data = json.loads(formatted_json_str)
to_end_flag = True
except json.JSONDecodeError:
print(f'Invalid JSON format. {idx}')
blank_total += len(std_ans)
question_total += 1
elif isinstance(formatted_json_str, dict):
data = formatted_json_str
to_end_flag = True
else:
blank_total += len(std_ans)
question_total += 1
model_ans = []
if to_end_flag:
model_ans = data.get('std_ans', [])
is_question_correct = True
for index, ans in enumerate(std_ans):
if index >= len(model_ans):
is_question_correct = False
break
if ans == model_ans[index]:
blank_correct += 1
else:
is_question_correct = False
blank_total += len(std_ans)
question_total += 1
question_correct += 1 if is_question_correct else 0
details[idx] = {
'detail': refer,
'model_ans': model_ans,
'prompt': prompt,
'raw_pred': pred,
}
results = {
'blank_level_correctness':
round(blank_correct / blank_total * 100, 2),
'question_level_correctness':
round(question_correct / question_total * 100, 2),
'details':
details
}
return results