OpenCompass/opencompass/runners/dlc.py

230 lines
9.2 KiB
Python

import datetime
import os
import os.path as osp
import random
import re
import subprocess
import sys
import time
from functools import partial
from typing import Any, Dict, List, Optional, Tuple
import mmengine
from mmengine.config import ConfigDict
from mmengine.utils import track_parallel_progress
from opencompass.registry import RUNNERS, TASKS
from opencompass.utils import get_logger
from .base import BaseRunner
@RUNNERS.register_module()
class DLCRunner(BaseRunner):
"""Distributed runner based on Alibaba Cloud Deep Learning Cluster (DLC).
It will launch multiple tasks in parallel with 'dlc' command. Please
install and configure DLC first before using this runner.
Args:
task (ConfigDict): Task type config.
aliyun_cfg (ConfigDict): Alibaba Cloud config.
max_num_workers (int): Max number of workers. Default: 32.
retry (int): Number of retries when job failed. Default: 2.
debug (bool): Whether to run in debug mode. Default: False.
lark_bot_url (str): Lark bot url. Default: None.
"""
def __init__(self,
task: ConfigDict,
aliyun_cfg: ConfigDict,
max_num_workers: int = 32,
retry: int = 2,
debug: bool = False,
lark_bot_url: str = None):
super().__init__(task=task, debug=debug, lark_bot_url=lark_bot_url)
self.aliyun_cfg = aliyun_cfg
self.max_num_workers = max_num_workers
self.retry = retry
logger = get_logger()
logger.warning(
'To ensure the integrity of the log results, the log displayed '
f'by {self.__class__.__name__} has a 10-second delay.')
def launch(self, tasks: List[Dict[str, Any]]) -> List[Tuple[str, int]]:
"""Launch multiple tasks.
Args:
tasks (list[dict]): A list of task configs, usually generated by
Partitioner.
Returns:
list[tuple[str, int]]: A list of (task name, exit code).
"""
if not self.debug:
status = track_parallel_progress(self._launch,
tasks,
nproc=self.max_num_workers,
keep_order=False)
else:
status = [self._launch(task, random_sleep=False) for task in tasks]
return status
def _launch(self, cfg: ConfigDict, random_sleep: Optional[bool] = None):
"""Launch a single task.
Args:
cfg (ConfigDict): Task config.
random_sleep (bool): Whether to sleep for a random time before
running the command. When Aliyun has many tasks to schedule,
its stability decreases. Therefore, when we need to submit a
large number of tasks at once, we adopt the "random_sleep"
strategy. Tasks that would have been submitted all at once are
now evenly spread out over a 10-second period. Default: None.
Returns:
tuple[str, int]: Task name and exit code.
"""
if random_sleep is None:
random_sleep = (self.max_num_workers > 32)
task = TASKS.build(dict(cfg=cfg, type=self.task_cfg['type']))
num_gpus = task.num_gpus
task_name = task.name
# Dump task config to file
mmengine.mkdir_or_exist('tmp/')
param_file = f'tmp/{os.getpid()}_params.py'
try:
cfg.dump(param_file)
# Build up DLC command
pwd = os.getcwd()
shell_cmd = (
f'source {self.aliyun_cfg["bashrc_path"]}; '
f'conda activate {self.aliyun_cfg["conda_env_name"]}; '
f'cd {pwd}; '
'{task_cmd}')
tmpl = ('dlc create job'
f" --command '{shell_cmd}'"
f' --name {task_name[:512]}'
' --kind BatchJob'
f" -c {self.aliyun_cfg['dlc_config_path']}"
f" --workspace_id {self.aliyun_cfg['workspace_id']}"
' --worker_count 1'
f' --worker_cpu {max(num_gpus * 6, 8)}'
f' --worker_gpu {num_gpus}'
f' --worker_memory {max(num_gpus * 32, 48)}'
f" --worker_image {self.aliyun_cfg['worker_image']}"
' --interactive')
get_cmd = partial(task.get_command,
cfg_path=param_file,
template=tmpl)
cmd = get_cmd()
logger = get_logger()
logger.debug(f'Running command: {cmd}')
# Run command with retry
if self.debug:
stdout = sys.stdout
else:
out_path = task.get_log_path(file_extension='out')
mmengine.mkdir_or_exist(osp.split(out_path)[0])
stdout = open(out_path, 'w', encoding='utf-8')
if random_sleep:
time.sleep(random.randint(0, 10))
def _run_within_retry():
try:
process = subprocess.Popen(cmd,
shell=True,
text=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
job_id = None
job_allocated = False
job_finished = False
last_end_time = datetime.datetime.now().strftime(
'%Y-%m-%dT%H:%M:%SZ')
while True:
if not job_allocated:
line = process.stdout.readline()
if not line:
break
match = re.search(r'(dlc[0-9a-z]+)', line)
if match and job_id is None:
job_id = match.group(1)
stdout.write(line)
match = re.search(r'Job .* is \[Running\]', line)
if match:
job_allocated = True
else:
try:
process.wait(10)
except subprocess.TimeoutExpired:
pass
else:
job_finished = True
if job_finished:
this_end_time = datetime.datetime.now(
).strftime('%Y-%m-%dT%H:%M:%SZ')
else:
this_end_time = (
datetime.datetime.now() -
datetime.timedelta(seconds=10)
).strftime('%Y-%m-%dT%H:%M:%SZ')
logs_cmd = (
'dlc logs'
f' {job_id} {job_id}-worker-0'
f' --start_time {last_end_time}'
f' --end_time {this_end_time}'
f" -c {self.aliyun_cfg['dlc_config_path']}")
log_process = subprocess.Popen(
logs_cmd,
shell=True,
text=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
log_output, log_err = log_process.communicate()
log_output = '\n'.join(log_output.split('\n')[2:])
stdout.write(log_output)
last_end_time = this_end_time
stdout.flush()
if job_finished:
break
process.wait()
return process.returncode
finally:
if job_id is not None:
cancel_cmd = (
'dlc stop job'
f' {job_id}'
f" -c {self.aliyun_cfg['dlc_config_path']}"
' -f')
subprocess.run(cancel_cmd,
shell=True,
text=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
return_code = _run_within_retry()
retry = self.retry
output_paths = task.get_output_paths()
while self._job_failed(return_code, output_paths) and retry > 0:
retry -= 1
cmd = get_cmd()
return_code = _run_within_retry()
finally:
# Clean up
os.remove(param_file)
return task_name, return_code
def _job_failed(self, return_code: int, output_paths: List[str]) -> bool:
return return_code != 0 or not all(
osp.exists(output_path) for output_path in output_paths)