OpenCompass/opencompass/multimodal/models/qwen/prompt_constructor.py
Yike Yuan bd50bad8b5
[Feat] Support mm models on public dataset and fix several issues. (#412)
* [Feat] Add public dataset support for visualglm, qwenvl, and flamingo

* [Fix] MMBench related changes.

* [Fix] Openflamingo inference.

* [Fix] Hide ckpt path.

* [Fix] Pre-commit.

---------

Co-authored-by: Haodong Duan <dhd.efz@gmail.com>
2023-09-19 19:08:44 +08:00

101 lines
3.0 KiB
Python

class QwenVLMMBenchPromptConstructor:
"""MMBench prompt constructor for Qwen-VL.
The output is a dict following the input format of Qwen-VL tokenizer.
"""
def __init__(self) -> None:
pass
def __call__(self, inputs: dict) -> list:
data_samples = inputs['data_samples']
assert len(data_samples) == 1
data_sample = data_samples[0]
question = data_sample.get('question')
options = data_sample.get('options')
context = data_sample.get('context')
if context is not None:
prompt = context + ' ' + question + ' ' + options
else:
prompt = question + ' ' + options
format_input = [
{
'image': 'This_is_path_to_an_image.'
}, # Just placeholder for Image Tokens
{
'text': prompt
},
]
return format_input
class QwenVLChatPromptConstructor:
"""Prompt constructorfor Qwen-VL-Chat."""
def __init__(self, prompt='') -> None:
self.prompt = prompt
def __call__(self, inputs: dict) -> list:
assert len(inputs['data_samples']) == 1
format_input = [
{
'image': 'This_is_path_to_an_image.'
}, # Just placeholder for Image Tokens
{
'text': self.prompt
},
]
return format_input
class QwenVLChatVQAPromptConstructor:
"""VQA prompt constructor for Qwen-VL-Chat."""
def __init__(self, prompt='') -> None:
self.prompt = prompt
def __call__(self, inputs: dict) -> list:
data_samples = inputs['data_samples']
assert len(data_samples) == 1
data_sample = data_samples[0]
question = data_sample.get('question')
format_input = [
{
'image': 'This_is_path_to_an_image.'
}, # Just placeholder for Image Tokens
{
'text': question + self.prompt
},
]
return format_input
class QwenVLChatScienceQAPromptConstructor:
"""ScienceQA prompt constructor for Qwen-VL-Chat."""
choice_mapping = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F'}
def __init__(self, prompt='') -> None:
self.prompt = prompt
def __call__(self, inputs: dict) -> list:
data_samples = inputs['data_samples']
assert len(data_samples) == 1
data_sample = data_samples[0]
question = data_sample.get('question')
choices = data_sample.get('choices')
choices = [
f'({self.choice_mapping[i]}) ' + item
for i, item in enumerate(choices)
]
choices = 'Choices: ' + ' '.join(choices) + '\n'
contexts = 'Context: ' + data_sample.get('hint')
format_input = [
{
'image': 'This_is_path_to_an_image.'
}, # Just placeholder for Image Tokens
{
'text': contexts + question + choices + self.prompt
},
]
return format_input