mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* add otter model for opencompass mmbench * add docs * add readme docs * debug for otter opencomass eval * delete unused folders * change to default data path * remove unused files * remove unused files * update * update config file * flake8 lint formated and add prompt generator * add prompt generator to config * add a specific postproecss * add post processor * add post processor * add post processor * update according to suggestions * remove unused redefinition
140 lines
4.5 KiB
Python
140 lines
4.5 KiB
Python
import random
|
|
import re
|
|
|
|
import torch
|
|
|
|
|
|
class OTTERMMBenchPostProcessor:
|
|
""""Post processor for OTTER on MMBench."""
|
|
|
|
def __init__(self) -> None:
|
|
pass
|
|
|
|
def __call__(self, output_token: torch.tensor, tokenizer) -> str:
|
|
|
|
if output_token[0] == 0:
|
|
output_token = output_token[1:]
|
|
if output_token[0] == 1:
|
|
output_token = output_token[1:]
|
|
output_text = tokenizer.decode(output_token,
|
|
add_special_tokens=False) # noqa
|
|
output_text = self._extract_key_words(output_text)
|
|
return output_text
|
|
|
|
def _extract_key_words(self, output_text: str) -> str:
|
|
output_text = (output_text.split('<answer>')[-1].lstrip().rstrip().
|
|
split('<|endofchunk|>')[0].lstrip().rstrip())
|
|
pattern = re.compile(r'([A-Z]\.)')
|
|
res = pattern.findall(output_text)
|
|
if len(res) > 0:
|
|
output_text = res[0][:-1]
|
|
return output_text
|
|
|
|
|
|
class OTTERCOCOCaptionPostProcessor:
|
|
""""Post processor for OTTER on COCO Caption."""
|
|
|
|
def __init__(self) -> None:
|
|
pass
|
|
|
|
def __call__(self, output_token: torch.tensor, tokenizer) -> str:
|
|
|
|
if output_token[0] == 0:
|
|
output_token = output_token[1:]
|
|
if output_token[0] == 1:
|
|
output_token = output_token[1:]
|
|
output_text = tokenizer.decode(output_token,
|
|
add_special_tokens=False) # noqa
|
|
output_text = (output_text.split('<answer>')[-1].lstrip().rstrip().
|
|
split('<|endofchunk|>')[0].lstrip().rstrip())
|
|
pattern = re.compile(r'([A-Z]\.)')
|
|
res = pattern.findall(output_text)
|
|
if len(res) > 0:
|
|
output_text = res[0][:-1]
|
|
return output_text
|
|
|
|
|
|
class OTTERScienceQAPostProcessor:
|
|
""""Post processor for OTTER on ScienceQA."""
|
|
|
|
def __init__(self) -> None:
|
|
pass
|
|
|
|
def __call__(self, output_token: torch.tensor, tokenizer) -> str:
|
|
|
|
if output_token[0] == 0:
|
|
output_token = output_token[1:]
|
|
if output_token[0] == 1:
|
|
output_token = output_token[1:]
|
|
output_text = tokenizer.decode(output_token,
|
|
add_special_tokens=False) # noqa
|
|
output_text = (output_text.split('<answer>')[-1].lstrip().rstrip().
|
|
split('<|endofchunk|>')[0].lstrip().rstrip())
|
|
pattern = re.compile(r'\(([A-Z])\)')
|
|
output_text = pattern.findall(output_text)
|
|
if len(output_text) == 0:
|
|
output_text = random.choice(['A', 'B', 'C', 'D'])
|
|
else:
|
|
output_text = output_text[0]
|
|
return output_text
|
|
|
|
|
|
class OTTERVQAPostProcessor:
|
|
""""Post processor for OTTER on VQA."""
|
|
|
|
def __init__(self) -> None:
|
|
pass
|
|
|
|
def __call__(self, output_token: torch.tensor, tokenizer) -> str:
|
|
|
|
if output_token[0] == 0:
|
|
output_token = output_token[1:]
|
|
if output_token[0] == 1:
|
|
output_token = output_token[1:]
|
|
output_text = tokenizer.decode(output_token,
|
|
add_special_tokens=False) # noqa
|
|
output_text = (output_text.split('<answer>')[-1].lstrip().rstrip().
|
|
split('<|endofchunk|>')[0].lstrip().rstrip())
|
|
return output_text
|
|
|
|
|
|
class OTTERVSRPostProcessor:
|
|
""""Post processor for OTTER on VSR."""
|
|
|
|
def __init__(self) -> None:
|
|
pass
|
|
|
|
def __call__(self, output_token: torch.tensor, tokenizer) -> str:
|
|
|
|
if output_token[0] == 0:
|
|
output_token = output_token[1:]
|
|
if output_token[0] == 1:
|
|
output_token = output_token[1:]
|
|
output_text = tokenizer.decode(output_token, add_special_tokens=False)
|
|
pattern = r'yes|no|Yes|No'
|
|
output_text = re.findall(pattern, output_text)
|
|
if len(output_text) > 0:
|
|
output_text = output_text[0].lower()
|
|
return output_text
|
|
|
|
|
|
class OTTERMMEPostProcessor(OTTERMMBenchPostProcessor):
|
|
""""Post processor for OTTER on MME."""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def __call__(self, output_token: torch.tensor, tokenizer) -> str:
|
|
response = super().__call__(output_token, tokenizer)
|
|
# extract yes or no, copy from MME official evaluation script
|
|
prefix_pred_ans = response[:4].lower()
|
|
|
|
if 'yes' in prefix_pred_ans:
|
|
pred_label = 'yes'
|
|
elif 'no' in prefix_pred_ans:
|
|
pred_label = 'no'
|
|
else:
|
|
pred_label = 'other'
|
|
|
|
return pred_label
|