OpenCompass/docs/en/get_started/installation.md
Xingjun.Wang edab1c07ba
[Feature] Support ModelScope datasets (#1289)
* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* udpate dataset for modelscope support

* update readme

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* update readme

* remove tydiqa japanese subset

* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* update readme

* udpate dataset for modelscope support

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* remove tydiqa japanese subset

* update util

* remove .DS_Store

* fix md format

* move util into package

* update docs/get_started.md

* restore eval_api_zhipu_v2.py, add environment setting

* Update dataset

* Update

* Update

* Update

* Update

---------

Co-authored-by: Yun lin <yunlin@U-Q9X2K4QV-1904.local>
Co-authored-by: Yunnglin <mao.looper@qq.com>
Co-authored-by: Yun lin <yunlin@laptop.local>
Co-authored-by: Yunnglin <maoyl@smail.nju.edu.cn>
Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
2024-07-29 13:48:32 +08:00

127 lines
4.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Installation
1. Set up the OpenCompass environment:
`````{tabs}
````{tab} Open-source Models with GPU
```bash
conda create --name opencompass python=3.10 pytorch torchvision pytorch-cuda -c nvidia -c pytorch -y
conda activate opencompass
```
If you want to customize the PyTorch version or related CUDA version, please refer to the [official documentation](https://pytorch.org/get-started/locally/) to set up the PyTorch environment. Note that OpenCompass requires `pytorch>=1.13`.
````
````{tab} API Models with CPU-only
```bash
conda create -n opencompass python=3.10 pytorch torchvision torchaudio cpuonly -c pytorch -y
conda activate opencompass
# also please install requiresments packages via `pip install -r requirements/api.txt` for API models if needed.
```
If you want to customize the PyTorch version, please refer to the [official documentation](https://pytorch.org/get-started/locally/) to set up the PyTorch environment. Note that OpenCompass requires `pytorch>=1.13`.
````
`````
2. Install OpenCompass:
```bash
git clone https://github.com/open-compass/opencompass.git
cd opencompass
pip install -e .
```
3. Install humaneval (Optional)
If you want to **evaluate your models coding ability on the humaneval dataset**, follow this step.
<details>
<summary><b>click to show the details</b></summary>
```bash
git clone https://github.com/openai/human-eval.git
cd human-eval
pip install -r requirements.txt
pip install -e .
cd ..
```
Please read the comments in `human_eval/execution.py` **lines 48-57** to understand the potential risks of executing the model generation code. If you accept these risks, uncomment **line 58** to enable code execution evaluation.
</details>
4. Install Llama (Optional)
If you want to **evaluate Llama / Llama-2 / Llama-2-chat with its official implementation**, follow this step.
<details>
<summary><b>click to show the details</b></summary>
```bash
git clone https://github.com/facebookresearch/llama.git
cd llama
pip install -r requirements.txt
pip install -e .
cd ..
```
You can find example configs in `configs/models`. ([example](https://github.com/open-compass/opencompass/blob/eb4822a94d624a4e16db03adeb7a59bbd10c2012/configs/models/llama2_7b_chat.py))
</details>
5. Install alpaca-eval (Optional)
If you want to**evaluate alpaca-eval in official ways**, follow this step.
<details>
<summary><b>click to show the details</b></summary>
```bash
pip install alpaca-eval
```
</details>
# Dataset Preparation
The datasets supported by OpenCompass mainly include three parts:
1. Huggingface datasets: The [Huggingface Datasets](https://huggingface.co/datasets) provide a large number of datasets, which will **automatically download** when running with this option.
Translate the paragraph into English:
2. ModelScope Datasets: [ModelScope OpenCompass Dataset](https://modelscope.cn/organization/opencompass) supports automatic downloading of datasets from ModelScope.
To enable this feature, set the environment variable: `export DATASET_SOURCE=ModelScope`. The available datasets include (sourced from OpenCompassData-core.zip):
```plain
humaneval, triviaqa, commonsenseqa, tydiqa, strategyqa, cmmlu, lambada, piqa, ceval, math, LCSTS, Xsum, winogrande, openbookqa, AGIEval, gsm8k, nq, race, siqa, mbpp, mmlu, hellaswag, ARC, BBH, xstory_cloze, summedits, GAOKAO-BENCH, OCNLI, cmnli
```
3. Custom dataset: OpenCompass also provides some Chinese custom **self-built** datasets. Please run the following command to **manually download and extract** them.
Run the following commands to download and place the datasets in the `${OpenCompass}/data` directory can complete dataset preparation.
```bash
# Run in the OpenCompass directory
wget https://github.com/open-compass/opencompass/releases/download/0.2.2.rc1/OpenCompassData-core-20240207.zip
unzip OpenCompassData-core-20240207.zip
```
If you need to use the more comprehensive dataset (~500M) provided by OpenCompass, You can download and `unzip` it using the following command:
```bash
wget https://github.com/open-compass/opencompass/releases/download/0.2.2.rc1/OpenCompassData-complete-20240207.zip
unzip OpenCompassData-complete-20240207.zip
cd ./data
find . -name "*.zip" -exec unzip "{}" \;
```
The list of datasets included in both `.zip` can be found [here](https://github.com/open-compass/opencompass/releases/tag/0.2.2.rc1)
OpenCompass has supported most of the datasets commonly used for performance comparison, please refer to `configs/dataset` for the specific list of supported datasets.
For next step, please read [Quick Start](./quick_start.md).